Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.
Sci Total Environ. 2013 Jul 1;456-457:50-60. doi: 10.1016/j.scitotenv.2013.03.065. Epub 2013 Apr 11.
Traffic-related air pollutants show high spatial variability near roads, posing a challenge to adequately assess exposures. Recent modeling approaches (e.g. dispersion models, land-use regression (LUR) models) have addressed this but mostly in urban areas where traffic is abundant. In contrast, our study area was located in a rural Swiss Alpine valley crossed by the main North-south transit highway of Switzerland. We conducted an extensive measurement campaign collecting continuous nitrogen dioxide (NO₂), particulate number concentrations (PN), daily respirable particulate matter (PM10), elemental carbon (EC) and organic carbon (OC) at one background, one highway and seven mobile stations from November 2007 to June 2009. Using these measurements, we built a hybrid model to predict daily outdoor NO₂ concentrations at residences of children participating in an asthma panel study. With the exception of OC, daily variations of the pollutants followed the temporal trends of heavy-duty traffic counts on the highway. In contrast, variations of weekly/seasonal means were strongly determined by meteorological conditions, e.g., winter inversion episodes. For pollutants related to primary exhaust emissions (i.e. NO₂, EC and PN) local spatial variation strongly depended on proximity to the highway. Pollutant concentrations decayed to background levels within 150 to 200 m from the highway. Two separate daily NO₂ prediction models were built using LUR approaches with (a) short-term traffic and weather data (model 1) and (b) subsequent addition of daily background NO₂ to previous model (model 2). Models 1 and 2 explained 70% and 91% of the variability in outdoor NO₂ concentrations, respectively. The biweekly averaged predictions from the final model 2 agreed very well with the independent biweekly integrated passive measurements taken at thirteen homes and nine community sites (validation R(2)=0.74). The excellent spatio-temporal performance of our model provides a very promising basis for the health effect assessment of the panel study.
交通相关的空气污染物在道路附近具有高度的空间变异性,这给充分评估暴露情况带来了挑战。最近的建模方法(例如,扩散模型、土地利用回归(LUR)模型)已经解决了这个问题,但主要是在交通繁忙的城市地区。相比之下,我们的研究区域位于瑞士阿尔卑斯山谷的一条农村公路,这条公路是瑞士南北向的主要过境公路。我们在 2007 年 11 月至 2009 年 6 月期间进行了一次广泛的测量活动,在一个背景站点、一个公路站点和七个移动站点连续采集了二氧化氮(NO₂)、颗粒物数浓度(PN)、每日可吸入颗粒物(PM10)、元素碳(EC)和有机碳(OC)。利用这些测量数据,我们建立了一个混合模型,以预测参与哮喘面板研究的儿童居住处的每日室外 NO₂浓度。除 OC 外,污染物的日变化与公路上重型交通计数的时间趋势一致。相反,每周/季节平均值的变化主要由气象条件决定,例如冬季逆温事件。对于与一次排放有关的污染物(即 NO₂、EC 和 PN),当地的空间变化强烈取决于与公路的距离。污染物浓度在距公路 150 至 200 米范围内衰减到背景水平。使用 LUR 方法,我们建立了两个单独的每日 NO₂预测模型,其中(a)短期交通和天气数据(模型 1)和(b)在先前模型中添加每日背景 NO₂(模型 2)。模型 1 和 2 分别解释了室外 NO₂浓度变异性的 70%和 91%。最终模型 2 的双周平均预测与在 13 个家庭和 9 个社区站点进行的独立双周综合被动测量非常吻合(验证 R²=0.74)。我们模型的出色时空性能为面板研究的健康影响评估提供了非常有希望的基础。