Suppr超能文献

LED 照明会影响罗曼生菜幼叶中的生物活性化合物。

LED illumination affects bioactive compounds in romaine baby leaf lettuce.

机构信息

Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333, Babtai, Kaunas, Lithuania.

出版信息

J Sci Food Agric. 2013 Oct;93(13):3286-91. doi: 10.1002/jsfa.6173. Epub 2013 May 15.

Abstract

BACKGROUND

The effect of light quality on phytochemicals in romaine baby leaf lettuce 'Thumper' was investigated in (I) a closed environment and (II, III) a greenhouse (16 h, 21/17 °C): (I) basal (638, 455, 660, 735 nm) LEDs supplemented with UV (380 nm), green (510 nm), yellow (595 nm) or orange (622 nm) LEDs (PPFD of ∼175 µmol m(-2) s(-1) ); (II) high-pressure sodium (HPS) lamps (90 µmol m(-2) s(-1) ) supplemented with blue (455, 470nm) or green (505, 530nm) LEDs (30 µmol m(-2) s(-1) ); (III) at 3 days before harvesting, HPS lamps (90 µmol m(-2) s(-1) ) supplemented with red (638 nm) LEDs (210 µmol m(-2) s(-1) ).

RESULTS

(I) Supplemental UV or orange light enhanced phenolic compounds, supplemental UV or green light enhanced α-carotene, and supplemental green light enhanced anthocyanins. All supplemental LED colours had a negative effect on tocopherol and ascorbic acid levels. (II) HPS lighting supplemented with different LEDs was not efficient, since the increase in some compounds did not compensate the decrease in major tested phytochemicals. (III) Short-term irradiation with supplemental 638 nm LEDs before harvesting in the greenhouse did not have a significant effect on phytochemical contents, apart from enhancing tocopherols.

CONCLUSION

Wavelength control using LED technology affects the production of secondary metabolites, as the metabolism of many nutrients is light-dependent. The narrow-bandwidth supplemental light effects were diminished by broader-spectrum HPS light or natural daylight in the greenhouse.

摘要

背景

本研究旨在探讨不同光质对罗马生菜‘Thumper’营养品质的影响,分别在(I)密闭环境和(II、III)温室中进行:(I)采用 638、455、660、735nm 基本(basal)LED 灯,并补加 UV(380nm)、绿(510nm)、黄(595nm)或橙(622nm)LED 灯(光密度约为 175μmol m(-2)s(-1));(II)采用高压钠灯(HPS)(90μmol m(-2)s(-1)),并补加蓝(455、470nm)或绿(505、530nm)LED 灯(30μmol m(-2)s(-1));(III)在收获前 3 天,采用 HPS 灯(90μmol m(-2)s(-1)),并补加红(638nm)LED 灯(210μmol m(-2)s(-1))。

结果

(I)补加 UV 或橙光可提高酚类化合物含量,补加 UV 或绿光可提高α-胡萝卜素含量,补加绿光可提高花色苷含量。所有补加 LED 光均降低了生育酚和抗坏血酸的含量。(II)HPS 灯光补加不同 LED 光的效果并不理想,因为一些化合物含量的增加并不能弥补主要测试的植物化学物质含量的降低。(III)温室中收获前短期补加 638nm LED 光对植物化学物质含量没有显著影响,但可提高生育酚含量。

结论

利用 LED 技术控制光的波长会影响次生代谢产物的生成,因为许多营养物质的代谢依赖于光照。在温室中,窄带宽补加光的效果会因 HPS 光或自然光的广谱性而减弱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验