Suppr超能文献

DNA 聚合酶β和δ对 3'滑突(CAG)n/(CTG)n 发夹的协调处理优先诱导重复扩展。

Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions.

机构信息

Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.

出版信息

J Biol Chem. 2013 May 24;288(21):15015-22. doi: 10.1074/jbc.M113.464370. Epub 2013 Apr 12.

Abstract

Expansion of CAG/CTG trinucleotide repeats causes certain familial neurological disorders. Hairpin formation in the nascent strand during DNA synthesis is considered a major path for CAG/CTG repeat expansion. However, the underlying mechanism is unclear. We show here that removal or retention of a nascent strand hairpin during DNA synthesis depends on hairpin structures and types of DNA polymerases. Polymerase (pol) δ alone removes the 3'-slipped hairpin using its 3'-5' proofreading activity when the hairpin contains no immediate 3' complementary sequences. However, in the presence of pol β, pol δ preferentially facilitates hairpin retention regardless of hairpin structures. In this reaction, pol β incorporates several nucleotides to the hairpin 3'-end, which serves as an effective primer for the continuous DNA synthesis by pol δ, thereby leading to hairpin retention and repeat expansion. These findings strongly suggest that coordinated processing of 3'-slipped (CAG)n/(CTG)n hairpins by polymerases δ and β on during DNA synthesis induces CAG/CTG repeat expansions.

摘要

CAG/CTG 三核苷酸重复扩展导致某些家族性神经疾病。在 DNA 合成过程中,新生链中的发夹形成被认为是 CAG/CTG 重复扩展的主要途径。然而,其潜在机制尚不清楚。我们在这里表明,在 DNA 合成过程中,新生链发夹的去除或保留取决于发夹结构和 DNA 聚合酶的类型。当发夹中没有立即的 3' 互补序列时,聚合酶 (pol) δ 仅使用其 3'-5' 校对活性去除 3' 滑链发夹。然而,在 pol β 的存在下,pol δ 优先促进发夹保留,而不管发夹结构如何。在该反应中,pol β 将几个核苷酸掺入发夹 3'-末端,这作为 pol δ 连续 DNA 合成的有效引物,从而导致发夹保留和重复扩展。这些发现强烈表明,在 DNA 合成过程中,聚合酶 δ 和 β 对 3' 滑链 (CAG)n/(CTG)n 发夹的协调处理诱导了 CAG/CTG 重复扩展。

相似文献

1
Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions.
J Biol Chem. 2013 May 24;288(21):15015-22. doi: 10.1074/jbc.M113.464370. Epub 2013 Apr 12.
3
The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins.
J Biol Chem. 2012 Aug 31;287(36):30151-6. doi: 10.1074/jbc.M112.389791. Epub 2012 Jul 11.
4
In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
DNA Repair (Amst). 2012 Feb 1;11(2):201-9. doi: 10.1016/j.dnarep.2011.10.020. Epub 2011 Oct 29.
5
Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells.
Nat Chem Biol. 2010 Sep;6(9):652-9. doi: 10.1038/nchembio.416. Epub 2010 Aug 1.
6
Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
Nat Struct Mol Biol. 2009 Aug;16(8):869-75. doi: 10.1038/nsmb.1638. Epub 2009 Jul 13.
7
Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
DNA Repair (Amst). 2016 Jun;42:107-18. doi: 10.1016/j.dnarep.2016.04.002. Epub 2016 Apr 16.
9
Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal.
DNA Repair (Amst). 2016 Dec;48:17-29. doi: 10.1016/j.dnarep.2016.10.006. Epub 2016 Oct 22.
10
The Role of XPG in Processing (CAG)n/(CTG)n DNA Hairpins.
Cell Biosci. 2011 Mar 9;1(1):11. doi: 10.1186/2045-3701-1-11.

引用本文的文献

1
MIF is a 3' flap nuclease that facilitates DNA replication and promotes tumor growth.
Nat Commun. 2021 May 19;12(1):2954. doi: 10.1038/s41467-021-23264-z.
2
Minidumbbell structures formed by ATTCT pentanucleotide repeats in spinocerebellar ataxia type 10.
Nucleic Acids Res. 2020 Jul 27;48(13):7557-7568. doi: 10.1093/nar/gkaa495.
3
A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases.
Heliyon. 2020 Feb 26;6(2):e03258. doi: 10.1016/j.heliyon.2020.e03258. eCollection 2020 Feb.
4
A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo.
Nat Genet. 2020 Feb;52(2):146-159. doi: 10.1038/s41588-019-0575-8. Epub 2020 Feb 14.
5
DNA mismatch repair in trinucleotide repeat instability.
Sci China Life Sci. 2017 Oct;60(10):1087-1092. doi: 10.1007/s11427-017-9186-7. Epub 2017 Oct 24.
6
RNA biology of disease-associated microsatellite repeat expansions.
Acta Neuropathol Commun. 2017 Aug 29;5(1):63. doi: 10.1186/s40478-017-0468-y.
7
Modulation of trinucleotide repeat instability by DNA polymerase β polymorphic variant R137Q.
PLoS One. 2017 May 5;12(5):e0177299. doi: 10.1371/journal.pone.0177299. eCollection 2017.
8
Replication stalling and DNA microsatellite instability.
Biophys Chem. 2017 Jun;225:38-48. doi: 10.1016/j.bpc.2016.11.007. Epub 2016 Nov 22.
10
Rate-determining Step of Flap Endonuclease 1 (FEN1) Reflects a Kinetic Bias against Long Flaps and Trinucleotide Repeat Sequences.
J Biol Chem. 2015 Aug 21;290(34):21154-21162. doi: 10.1074/jbc.M115.666438. Epub 2015 Jul 9.

本文引用的文献

1
The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins.
J Biol Chem. 2012 Aug 31;287(36):30151-6. doi: 10.1074/jbc.M112.389791. Epub 2012 Jul 11.
2
In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
DNA Repair (Amst). 2012 Feb 1;11(2):201-9. doi: 10.1016/j.dnarep.2011.10.020. Epub 2011 Oct 29.
3
The Role of XPG in Processing (CAG)n/(CTG)n DNA Hairpins.
Cell Biosci. 2011 Mar 9;1(1):11. doi: 10.1186/2045-3701-1-11.
4
DNA polymerases and cancer.
Nat Rev Cancer. 2011 Feb;11(2):96-110. doi: 10.1038/nrc2998.
5
Proteasomal dysfunction in aging and Huntington disease.
Neurobiol Dis. 2011 Jul;43(1):4-8. doi: 10.1016/j.nbd.2010.11.018. Epub 2010 Dec 8.
6
Mechanisms of trinucleotide repeat instability during human development.
Nat Rev Genet. 2010 Nov;11(11):786-99. doi: 10.1038/nrg2828.
7
Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells.
Nat Chem Biol. 2010 Sep;6(9):652-9. doi: 10.1038/nchembio.416. Epub 2010 Aug 1.
8
Repeat instability as the basis for human diseases and as a potential target for therapy.
Nat Rev Mol Cell Biol. 2010 Mar;11(3):165-70. doi: 10.1038/nrm2854.
9
DNA polymerase family X: function, structure, and cellular roles.
Biochim Biophys Acta. 2010 May;1804(5):1136-50. doi: 10.1016/j.bbapap.2009.07.008. Epub 2009 Jul 23.
10
Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
Nat Struct Mol Biol. 2009 Aug;16(8):869-75. doi: 10.1038/nsmb.1638. Epub 2009 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验