Suppr超能文献

滑动的触觉检测:表面微观几何结构与外周神经编码

Tactile detection of slip: surface microgeometry and peripheral neural codes.

作者信息

Srinivasan M A, Whitehouse J M, LaMotte R H

机构信息

Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06510.

出版信息

J Neurophysiol. 1990 Jun;63(6):1323-32. doi: 10.1152/jn.1990.63.6.1323.

Abstract
  1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to discriminate the direction of skin stretch caused by friction and to detect the sliding motion (slip) of the plates with or without micrometer-sized surface features was determined. To identify the associated peripheral neural codes, evoked responses to the same stimuli were recorded from single, low-threshold mechanoreceptive afferent fibers innervating the fingerpads of anesthetized macaque monkeys. 2. Humans could not detect the slip of a smooth glass plate on the fingerpad. However, the direction of skin stretch was perceived based on the information conveyed by the slowly adapting afferents that respond differentially to the stretch directions. Whereas the direction of skin stretch signaled the direction of impending slip, the perception of relative motion between the plate and the finger required the existence of detectable surface features. 3. Barely detectable micrometer-sized protrusions on smooth surfaces led to the detection of slip of these surfaces, because of the exclusive activation of rapidly adapting fibers of either the Meissner (RA) or the Pacinian (PC) type to specific geometries of the microfeatures. The motion of a smooth plate with a very small single raised dot (4 microns high, 550 microns diam) caused the sequential activation of neighboring RAs along the dot path, thus providing a reliable spatiotemporal code. The stroking of the plate with a fine homogeneous texture composed of a matrix of dots (1 microns high, 50 microns diam, and spaced at 100 microns center-to-center) induced vibrations in the fingerpad that activated only the PCs and resulted in an intensive code. 4. The results show that surprisingly small features on smooth surfaces are detected by humans and lead to the detection of slip of these surfaces, with the geometry of the microfeatures governing the associated neural codes. When the surface features are of sizes greater than the response thresholds of all the receptors, redundant spatiotemporal and intensive information is available for the detection of slip.
摘要
  1. 研究了平面微观几何结构在检测人体和猴手指腹表面滑动中的作用。通过使用伺服控制的触觉刺激器在人体受试者的被动手指腹上按压和摩擦玻璃板,确定了人类辨别由摩擦引起的皮肤拉伸方向以及检测有无微米级表面特征的玻璃板滑动运动(滑移)的能力。为了识别相关的外周神经编码,从支配麻醉猕猴手指腹的单根低阈值机械感受传入纤维记录了对相同刺激的诱发反应。2. 人类无法检测到光滑玻璃板在手指腹上的滑移。然而,基于对拉伸方向有不同反应的慢适应传入纤维所传递的信息,可以感知皮肤拉伸的方向。虽然皮肤拉伸方向预示着即将发生的滑移方向,但要感知玻璃板和手指之间的相对运动,则需要存在可检测到的表面特征。3. 光滑表面上几乎不可检测的微米级凸起导致了对这些表面滑移的检测,这是因为迈斯纳(RA)或帕西尼(PC)型快速适应纤维对微观特征的特定几何形状有独特的激活作用。带有非常小的单个凸起圆点(高4微米,直径550微米)的光滑平板的运动导致沿圆点路径相邻的RA纤维依次激活,从而提供了可靠的时空编码。用由圆点矩阵组成的精细均匀纹理(高1微米,直径50微米,中心间距100微米)摩擦平板,会在手指腹中引起振动,仅激活PC纤维并产生密集编码。4. 结果表明,人类能够检测到光滑表面上惊人的微小特征,并导致对这些表面滑移的检测,微观特征的几何形状决定了相关的神经编码。当表面特征的尺寸大于所有感受器的反应阈值时,就有冗余的时空和密集信息可用于检测滑移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验