Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-569 CHS, BOX 957115, Los Angeles, CA 90095, USA.
Circulation. 2013 May 14;127(19):1957-67. doi: 10.1161/CIRCULATIONAHA.112.001219. Epub 2013 Apr 15.
BACKGROUND: Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. METHODS AND RESULTS: To characterize mt morphology, biogenesis, and genomic integrity in human HF, we investigated left ventricular tissue from nonfailing hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared with ICM or nonfailing hearts. mt volume density and mtDNA copy number was increased by ≈2-fold (P<0.001) in DCM hearts in comparison with ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts, suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 versus nonfailing hearts, P<0.05 versus ICM). CONCLUSIONS: In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a peroxisome proliferator-activated receptor γ coactivator 1α-dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM.
背景:线粒体是心力衰竭(HF)发生和进展的关键因素。线粒体功能障碍导致能量产生减少和细胞死亡增加,从而促进左心室衰竭的进展。导致 HF 中线粒体功能障碍的基本机制尚未完全阐明。
方法和结果:为了研究人类 HF 中线粒体的形态、生物发生和基因组完整性,我们研究了非衰竭心脏以及终末期缺血性(ICM)或扩张型(DCM)心肌病心脏的左心室组织。虽然两种类型的心肌病都存在线粒体功能障碍,但与 ICM 或非衰竭心脏相比,DCM 中线粒体更小,数量更多。与 ICM 心脏相比,DCM 心脏中线粒体的体积密度和 mtDNA 拷贝数增加了约 2 倍(P<0.001)。这些变化伴随着 DCM 中线粒体 DNA 编码基因的表达增加,而 ICM 心脏则没有变化。在衰竭的心脏中,mtDNA 修复和抗氧化基因减少,提示存在有缺陷的修复和保护系统,这可能导致 DCM 中线粒体 DNA 缺失突变增加 4.1 倍(P<0.05 与非衰竭心脏相比,P<0.05 与 ICM 心脏相比)。
结论:在 DCM 中,线粒体功能障碍与 mtDNA 损伤和缺失有关,这可能是突变应激与过氧化物酶体增殖物激活受体 γ 共激活因子 1α 依赖性 mt 生物发生刺激相结合的结果。然而,这种适应性代偿反应会导致额外的氧化损伤。因此,我们的研究结果支持进一步研究 DCM 中线粒体功能障碍的新机制和治疗策略。
Circulation. 2013-4-15
J Am Coll Cardiol. 2007-10-2
Physiol Genomics. 2003-1-15
Ann Thorac Surg. 2002-4
J Mol Cell Cardiol Plus. 2025-6-10
Int J Mol Sci. 2024-9-6
Nat Cardiovasc Res. 2024-8
Cardiovasc Res. 2010-7-28
Biochim Biophys Acta. 2010
Cardiovasc Res. 2009-10-1
Cell Mol Life Sci. 2009-3
Cardiovasc Res. 2009-2-15