Suppr超能文献

酵母染色体 IV 的 1.1 Mb 臂上自发有丝分裂重组热点的高分辨率图谱。

High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV.

机构信息

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.

出版信息

PLoS Genet. 2013 Apr;9(4):e1003434. doi: 10.1371/journal.pgen.1003434. Epub 2013 Apr 4.

Abstract

Although homologous recombination is an important pathway for the repair of double-stranded DNA breaks in mitotically dividing eukaryotic cells, these events can also have negative consequences, such as loss of heterozygosity (LOH) of deleterious mutations. We mapped about 140 spontaneous reciprocal crossovers on the right arm of the yeast chromosome IV using single-nucleotide-polymorphism (SNP) microarrays. Our mapping and subsequent experiments demonstrate that inverted repeats of Ty retrotransposable elements are mitotic recombination hotspots. We found that the mitotic recombination maps on the two homologs were substantially different and were unrelated to meiotic recombination maps. Additionally, about 70% of the DNA lesions that result in LOH are likely generated during G1 of the cell cycle and repaired during S or G2. We also show that different genetic elements are associated with reciprocal crossover conversion tracts depending on the cell cycle timing of the initiating DSB.

摘要

虽然同源重组是有丝分裂的真核细胞修复双链 DNA 断裂的重要途径,但这些事件也可能产生负面后果,例如有害突变的杂合性丢失 (LOH)。我们使用单核苷酸多态性 (SNP) 微阵列在酵母染色体 IV 的右臂上定位了大约 140 个自发的相互易位。我们的作图和后续实验表明,Ty 反转录转座元件的反向重复是有丝分裂重组的热点。我们发现,两个同源物上的有丝分裂重组图谱有很大的不同,与减数分裂重组图谱无关。此外,导致 LOH 的约 70%的 DNA 损伤可能是在细胞周期的 G1 期产生的,并在 S 期或 G2 期修复。我们还表明,不同的遗传元件与易位转换区相关,这取决于起始 DSB 的细胞周期时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7db/3616911/d481c4cf22f5/pgen.1003434.g001.jpg

相似文献

1
High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV.
PLoS Genet. 2013 Apr;9(4):e1003434. doi: 10.1371/journal.pgen.1003434. Epub 2013 Apr 4.
2
A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae.
PLoS Genet. 2009 Mar;5(3):e1000410. doi: 10.1371/journal.pgen.1000410. Epub 2009 Mar 13.
3
High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae.
Genetics. 2014 Sep;198(1):181-92. doi: 10.1534/genetics.114.167395. Epub 2014 Jul 1.
6
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.
PLoS Genet. 2013 Oct;9(10):e1003894. doi: 10.1371/journal.pgen.1003894. Epub 2013 Oct 31.
7
Mitotic Gene Conversion Tracts Associated with Repair of a Defined Double-Strand Break in .
Genetics. 2017 Sep;207(1):115-128. doi: 10.1534/genetics.117.300057. Epub 2017 Jul 25.
8
Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae.
PLoS Genet. 2013 Aug;9(8):e1003732. doi: 10.1371/journal.pgen.1003732. Epub 2013 Aug 29.
9
High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast.
PLoS Genet. 2016 Mar 11;12(3):e1005938. doi: 10.1371/journal.pgen.1005938. eCollection 2016 Mar.

引用本文的文献

2
Spontaneous and environment induced genomic alterations in yeast model.
Cell Insight. 2024 Sep 26;4(1):100209. doi: 10.1016/j.cellin.2024.100209. eCollection 2025 Feb.
3
Novel insights into the effects of 5-hydroxymethfurural on genomic instability and phenotypic evolution using a yeast model.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0164923. doi: 10.1128/aem.01649-23. Epub 2023 Dec 18.
4
Splitting the yeast centromere by recombination.
Nucleic Acids Res. 2024 Jan 25;52(2):690-707. doi: 10.1093/nar/gkad1110.
5
Nonlethal Furfural Exposure Causes Genomic Alterations and Adaptability Evolution in Saccharomyces cerevisiae.
Microbiol Spectr. 2023 Aug 17;11(4):e0121623. doi: 10.1128/spectrum.01216-23. Epub 2023 Jul 3.
8
Shuffling the yeast genome using CRISPR/Cas9-generated DSBs that target the transposable Ty1 elements.
PLoS Genet. 2023 Jan 26;19(1):e1010590. doi: 10.1371/journal.pgen.1010590. eCollection 2023 Jan.
9
Loss of Heterozygosity Spectrum Depends on Ploidy Level in Natural Yeast Populations.
Mol Biol Evol. 2022 Nov 3;39(11). doi: 10.1093/molbev/msac214.
10
Global genomic instability caused by reduced expression of DNA polymerase ε in yeast.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2119588119. doi: 10.1073/pnas.2119588119. Epub 2022 Mar 15.

本文引用的文献

2
Double-strand break end resection and repair pathway choice.
Annu Rev Genet. 2011;45:247-71. doi: 10.1146/annurev-genet-110410-132435. Epub 2011 Sep 12.
5
Friedreich's ataxia (GAA)n•(TTC)n repeats strongly stimulate mitotic crossovers in Saccharomyces cerevisae.
PLoS Genet. 2011 Jan 13;7(1):e1001270. doi: 10.1371/journal.pgen.1001270.
8
Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes.
PLoS Genet. 2010 Jul 1;6(7):e1001006. doi: 10.1371/journal.pgen.1001006.
9
From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events.
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7383-8. doi: 10.1073/pnas.1001940107. Epub 2010 Mar 15.
10
Maintaining genome stability at the replication fork.
Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19. doi: 10.1038/nrm2852.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验