Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
PLoS One. 2013 Apr 4;8(4):e61112. doi: 10.1371/journal.pone.0061112. Print 2013.
The K-Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, does not move beyond the endoplasmic reticulum or the early Golgi, and thus fails to reach the plasma membrane. We establish through co-immunoprecipitation experiments that both wild-type and mutant KCC3 with KCC2 results in the formation of hetero-dimers. We further demonstrate that formation of these hetero-dimers prevents the proper trafficking of the cotransporter to the plasma membrane, resulting in a significant decrease in cotransporter function. This effect is due to interaction between the K-Cl cotransporter isoforms, as this was not observed when KCC3-E289G was co-expressed with NKCC1. Our studies also reveal that the glutamic acid residue is essential to K-Cl cotransporter function, as the corresponding mutation in KCC2 also leads to an absence of function. Interestingly, mutation of this conserved glutamic acid residue in the Na(+)-dependent cation-chloride cotransporters had no effect on NKCC1 function in isosmotic conditions, but diminished cotransporter activity under hypertonicity. Together, our data show that the glutamic acid residue (E289) is essential for proper trafficking and function of KCCs and that expression of a non-functional but full-length K-Cl cotransporter might results in dominant-negative effects on other K-Cl cotransporters.
K-Cl 协同转运蛋白(KCC)在多种细胞中维持氯离子和体积的稳态。在克隆小鼠 KCC3 cDNA 的过程中,我们遇到了一个克隆突变(E289G),使协同转运蛋白在非洲爪蟾卵母细胞的功能测定中失活。通过生化研究,我们证明突变体 E289G 协同转运蛋白缺乏糖基化,不能超越内质网或早期高尔基体,因此无法到达质膜。我们通过共免疫沉淀实验证实,野生型和突变型 KCC3 与 KCC2 都会形成异源二聚体。我们进一步证明,这些异源二聚体的形成阻止了协同转运蛋白向质膜的正确运输,导致协同转运蛋白功能显著下降。这种效应是由于 K-Cl 协同转运蛋白同工型之间的相互作用所致,因为当 KCC3-E289G 与 NKCC1 共表达时,没有观察到这种情况。我们的研究还表明,谷氨酸残基对 K-Cl 协同转运蛋白的功能至关重要,因为 KCC2 中的相应突变也导致其失去功能。有趣的是,在等渗条件下,这种在 Na(+)-依赖性阳离子-氯离子协同转运蛋白中保守的谷氨酸残基的突变对 NKCC1 的功能没有影响,但在高渗条件下会降低协同转运蛋白的活性。总之,我们的数据表明,谷氨酸残基(E289)对于 KCC 的正确运输和功能是必不可少的,表达一种无功能但全长的 K-Cl 协同转运蛋白可能会对其他 K-Cl 协同转运蛋白产生显性负效应。