Dipartimento di Chimica and NIS-Nanostructured Interfaces and Surfaces-Centre of Excellence, Università degli Studi di Torino, Torino, Italy.
Langmuir. 2013 May 14;29(19):5749-59. doi: 10.1021/la304795w. Epub 2013 Apr 30.
The reactivity of bioglasses, which is related to the dissolution of cations and orthosilicate groups in the physiological fluid, strongly depends on the key structural features present at the glass surfaces. On the basis of the composition and the synthetic routes employed to make the glass, surfaces with very different characteristics and thus presenting different mechanisms of dissolution can be observed. In this paper, the surface structures of two very different bioglass compositions, namely 45S5 (46.1 SiO2, 24.4 Na2O, 26.9 CaO, and 2.6 P2O5 mol %) and 77S (80.0 SiO2, 16.0 CaO, and 4.0 P2O5 mol %), have been investigated by means of periodic DFT calculations based on a PBE functional and localized Gaussian basis set as encoded in the CRYSTAL code. Our calculations show that the two glass surfaces differ by the relative amount of key structural sites such as NBOs, exposed ions, orthosilicate units, and small rings. We have demonstrated how the number of these sites affects the surface stability and reactivity (bioactivity).
生物玻璃的反应性与在生理流体中阳离子和正硅酸根的溶解有关,强烈依赖于玻璃表面存在的关键结构特征。根据用于制造玻璃的组成和合成途径,可以观察到具有非常不同特性的表面,从而呈现出不同的溶解机制。在本文中,通过基于 PBE 函数和局部高斯基集的周期性 DFT 计算(编码在 CRYSTAL 代码中),研究了两种非常不同的生物玻璃成分 45S5(46.1SiO2、24.4Na2O、26.9CaO 和 2.6P2O5mol%)和 77S(80.0SiO2、16.0CaO 和 4.0P2O5mol%)的表面结构。我们的计算表明,两种玻璃表面的差异在于关键结构位点的相对数量,如 NBO、暴露离子、正硅酸根单元和小环。我们已经证明了这些位点的数量如何影响表面稳定性和反应性(生物活性)。