Center for Population Biology, University of California, Davis, California 95616, USA.
Am Nat. 2013 May;181(5):715-24. doi: 10.1086/669969. Epub 2013 Mar 27.
In multispecies assemblages, phylogenetic relatedness often predicts total community biomass. In assemblages dominated by a single species, increasing the number of genotypes increases total production, but the role of genetic relatedness is unknown. We used data from three published experiments and a field survey of eelgrass (Zostera marina), a habitat-forming marine angiosperm, to examine the strength and direction of the relationship between genetic relatedness and plant biomass. The genetic relatedness of an assemblage strongly predicted its biomass, more so than the number of genotypes. However, contrary to the pattern observed in multispecies assemblages, maximum biomass occurred in assemblages of more closely related individuals. The mechanisms underlying this pattern remain unclear; however, our data support a role for both trait differentiation and cooperation among kin. Many habitat-forming species interact intensely with conspecifics of varying relatedness; thus, genetic relatedness could influence the functioning of ecosystems dominated by such species.
在多物种组合中,系统发育关系通常可以预测群落的总生物量。在由单一物种主导的组合中,增加基因型的数量会增加总生产力,但遗传关系的作用尚不清楚。我们使用了来自三个已发表的实验和对海草(Zostera marina)的实地调查的数据,海草是一种形成栖息地的海洋被子植物,以检验遗传关系与植物生物量之间的关系的强度和方向。组合的遗传关系强烈预测了其生物量,比基因型数量的预测能力更强。然而,与多物种组合中观察到的模式相反,亲缘关系更密切的个体组合中出现了最大的生物量。这种模式的潜在机制尚不清楚;但是,我们的数据支持特质分化和亲属之间合作的作用。许多形成栖息地的物种与亲缘关系不同的同种个体之间相互作用强烈;因此,遗传关系可能会影响由这些物种主导的生态系统的功能。