Suppr超能文献

在基因组DNA和RNA中发现广泛存在的GTP结合基序。

Discovery of widespread GTP-binding motifs in genomic DNA and RNA.

作者信息

Curtis Edward A, Liu David R

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Chem Biol. 2013 Apr 18;20(4):521-32. doi: 10.1016/j.chembiol.2013.02.015.

Abstract

Biological RNAs that bind small molecules have been implicated in a variety of regulatory and catalytic processes. Inspired by these examples, we used in vitro selection to search a pool of genome-encoded RNA fragments for naturally occurring GTP aptamers. Several aptamer classes were identified, including one (the "G motif") with a G-quadruplex structure. Further analysis revealed that most RNA and DNA G-quadruplexes bind GTP. The G motif is abundant in eukaryotes, and the human genome contains 75,000 examples with dissociation constants comparable to the GTP concentration of a eukaryotic cell (300 μM). G-quadruplexes play roles in diverse cellular processes, and our findings raise the possibility that GTP may play a role in the function of these elements. Consistent with this possibility, the sequence requirements of several classes of regulatory G-quadruplexes parallel those of GTP binding.

摘要

与小分子结合的生物RNA参与了多种调控和催化过程。受这些实例启发,我们利用体外筛选技术,在一组基因组编码的RNA片段中寻找天然存在的GTP适配体。我们鉴定出了几类适配体,其中一类(“G基序”)具有G-四链体结构。进一步分析表明,大多数RNA和DNA G-四链体都能结合GTP。G基序在真核生物中很丰富,人类基因组中约有75,000个实例,其解离常数与真核细胞的GTP浓度(约300μM)相当。G-四链体在多种细胞过程中发挥作用,我们的研究结果增加了GTP可能在这些元件功能中发挥作用的可能性。与此可能性一致的是,几类调控性G-四链体的序列要求与GTP结合的序列要求相似。

相似文献

1
Discovery of widespread GTP-binding motifs in genomic DNA and RNA.
Chem Biol. 2013 Apr 18;20(4):521-32. doi: 10.1016/j.chembiol.2013.02.015.
2
An intermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer.
RNA. 2016 Nov;22(11):1750-1759. doi: 10.1261/rna.058909.116. Epub 2016 Sep 22.
3
GTP-Dependent Formation of Multimeric G-Quadruplexes.
ACS Chem Biol. 2019 Sep 20;14(9):1951-1963. doi: 10.1021/acschembio.9b00428. Epub 2019 Sep 5.
4
Specific suppression of D-RNA G-quadruplex-protein interaction with an L-RNA aptamer.
Nucleic Acids Res. 2020 Oct 9;48(18):10125-10141. doi: 10.1093/nar/gkaa759.
5
NMR resonance assignments for the GTP-binding RNA aptamer 9-12 in complex with GTP.
Biomol NMR Assign. 2019 Oct;13(2):281-286. doi: 10.1007/s12104-019-09892-z. Epub 2019 Apr 27.
6
A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats.
RNA Biol. 2014;11(6):682-92. doi: 10.4161/rna.28798. Epub 2014 Apr 24.
7
Comparison of protein capture from a human cancer cell line by genomic G-quadruplex DNA sequences toward aptamer discovery.
Anal Bioanal Chem. 2021 Jun;413(14):3775-3788. doi: 10.1007/s00216-021-03328-1. Epub 2021 Apr 21.
8
G-quadruplex-based aptamers against protein targets in therapy and diagnostics.
Biochim Biophys Acta Gen Subj. 2017 May;1861(5 Pt B):1429-1447. doi: 10.1016/j.bbagen.2016.11.027. Epub 2016 Nov 16.
9
Altered biochemical specificity of G-quadruplexes with mutated tetrads.
Nucleic Acids Res. 2016 Dec 15;44(22):10789-10803. doi: 10.1093/nar/gkw987. Epub 2016 Oct 26.
10
A G-quadruplex-forming RNA aptamer binds to the MTG8 TAFH domain and dissociates the leukemic AML1-MTG8 fusion protein from DNA.
FEBS Lett. 2020 Nov;594(21):3477-3489. doi: 10.1002/1873-3468.13914. Epub 2020 Sep 11.

引用本文的文献

1
NMR Screen Reveals the Diverse Structural Landscape of a G-Quadruplex Library.
Chemistry. 2024 Dec 2;30(67):e202401437. doi: 10.1002/chem.202401437. Epub 2024 Nov 11.
2
Emergence of ATP- and GTP-Binding Aptamers from Single RNA Sequences by Error-Prone Replication and Selection.
ChemSystemsChem. 2023 Jul 2;5(5). doi: 10.1002/syst.202300006. eCollection 2023 Sep.
3
Discovering riboswitches: the past and the future.
Trends Biochem Sci. 2023 Feb;48(2):119-141. doi: 10.1016/j.tibs.2022.08.009. Epub 2022 Sep 20.
4
Pushing the Limits of Nucleic Acid Function.
Chemistry. 2022 Dec 20;28(71):e202201737. doi: 10.1002/chem.202201737. Epub 2022 Oct 26.
6
Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression?
Front Physiol. 2022 May 17;13:882944. doi: 10.3389/fphys.2022.882944. eCollection 2022.
7
Regulation of local GTP availability controls RAC1 activity and cell invasion.
Nat Commun. 2021 Oct 19;12(1):6091. doi: 10.1038/s41467-021-26324-6.
8
Single-round deoxyribozyme discovery.
Nucleic Acids Res. 2021 Jul 9;49(12):6971-6981. doi: 10.1093/nar/gkab504.
9
Overlapping but distinct: a new model for G-quadruplex biochemical specificity.
Nucleic Acids Res. 2021 Feb 26;49(4):1816-1827. doi: 10.1093/nar/gkab037.
10
A ribosomal RNA fragment with 2',3'-cyclic phosphate and GTP-binding activity acts as RIG-I ligand.
Nucleic Acids Res. 2020 Oct 9;48(18):10397-10412. doi: 10.1093/nar/gkaa739.

本文引用的文献

2
The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis.
Nat Chem Biol. 2012 Dec;8(12):963-5. doi: 10.1038/nchembio.1095. Epub 2012 Oct 21.
3
5'-UTR RNA G-quadruplexes: translation regulation and targeting.
Nucleic Acids Res. 2012 Jun;40(11):4727-41. doi: 10.1093/nar/gks068. Epub 2012 Feb 20.
4
The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements.
Pure Appl Chem. 2010 Jan 1;82(8):1609-1621. doi: 10.1351/PAC-CON-09-09-29.
5
The transcriptional landscape.
Methods Mol Biol. 2011;703:3-14. doi: 10.1007/978-1-59745-248-9_1.
6
An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES.
J Am Chem Soc. 2010 Dec 22;132(50):17831-9. doi: 10.1021/ja106287x. Epub 2010 Nov 24.
8
Ribozymes and riboswitches: modulation of RNA function by small molecules.
Biochemistry. 2010 Nov 2;49(43):9123-31. doi: 10.1021/bi1012645.
9
Genomic SELEX: a discovery tool for genomic aptamers.
Methods. 2010 Oct;52(2):125-32. doi: 10.1016/j.ymeth.2010.06.004. Epub 2010 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验