Suppr超能文献

负链 RNA 病毒的聚合酶。

The polymerase of negative-stranded RNA viruses.

机构信息

Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States.

出版信息

Curr Opin Virol. 2013 Apr;3(2):103-10. doi: 10.1016/j.coviro.2013.03.008. Epub 2013 Apr 18.

Abstract

Negative-sense (NS) RNA viruses deliver into cells a mega-dalton RNA-protein complex competent for transcription. Within this complex, the RNA is protected in a nucleocapsid protein (NP) sheath which the viral polymerase negotiates during RNA synthesis. The NP-RNA templates come as nonsegmented (NNS) or segmented (SNS), necessitating distinct strategies for transcription by their polymerases. Atomic-level understanding of the NP-RNA of both NNS and SNS RNA viruses show that the RNA must be transiently dissociated from NP during RNA synthesis. Here we summarize and compare the polymerases of NNS and SNS RNA viruses, and the current structural data on the polymerases. Those comparisons inform us on the evolution of related RNA synthesis machines which use two distinct mechanisms for mRNA cap formation.

摘要

负义(NS)RNA 病毒将一个兆道尔顿的 RNA-蛋白复合物递送到细胞中,该复合物有能力进行转录。在这个复合物中,RNA 被核衣壳蛋白(NP)鞘保护,病毒聚合酶在 RNA 合成过程中会穿过这个鞘。NP-RNA 模板有非分段(NNS)和分段(SNS)两种,这就需要它们的聚合酶采用不同的转录策略。对 NNS 和 SNS RNA 病毒的 NP-RNA 的原子水平的理解表明,在 RNA 合成过程中,RNA 必须从 NP 上短暂解离。在这里,我们总结和比较了 NNS 和 SNS RNA 病毒的聚合酶,以及聚合酶的当前结构数据。这些比较使我们了解了使用两种不同的 mRNA 帽形成机制的相关 RNA 合成机器的进化。

相似文献

1
The polymerase of negative-stranded RNA viruses.
Curr Opin Virol. 2013 Apr;3(2):103-10. doi: 10.1016/j.coviro.2013.03.008. Epub 2013 Apr 18.
2
Structural insights into RNA polymerases of negative-sense RNA viruses.
Nat Rev Microbiol. 2021 May;19(5):303-318. doi: 10.1038/s41579-020-00501-8. Epub 2021 Jan 25.
3
Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases.
Curr Opin Struct Biol. 2016 Feb;36:75-84. doi: 10.1016/j.sbi.2016.01.002. Epub 2016 Jan 27.
4
Structures and Mechanisms of Nonsegmented, Negative-Strand RNA Virus Polymerases.
Annu Rev Virol. 2023 Sep 29;10(1):199-215. doi: 10.1146/annurev-virology-111821-102603. Epub 2023 May 3.
5
Architecture and regulation of negative-strand viral enzymatic machinery.
RNA Biol. 2012 Jul;9(7):941-8. doi: 10.4161/rna.20345. Epub 2012 Jul 1.
6
Yeast virus-like particles possess a capsid-associated single-stranded RNA polymerase.
Nature. 1977 Aug 4;268(5619):464-6. doi: 10.1038/268464a0.
7
Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis.
Virology. 2004 Jan 20;318(2):463-73. doi: 10.1016/j.virol.2003.10.031.
8
Common and unique features of viral RNA-dependent polymerases.
Cell Mol Life Sci. 2014 Nov;71(22):4403-20. doi: 10.1007/s00018-014-1695-z. Epub 2014 Aug 1.
9
Structure of a rabies virus polymerase complex from electron cryo-microscopy.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2099-2107. doi: 10.1073/pnas.1918809117. Epub 2020 Jan 17.
10
Viral polymerases.
Virus Res. 2017 Apr 15;234:1-3. doi: 10.1016/j.virusres.2017.02.003. Epub 2017 Feb 8.

引用本文的文献

2
Structure of the measles virus ternary polymerase complex.
Nat Commun. 2025 Apr 23;16(1):3819. doi: 10.1038/s41467-025-58985-y.
3
Expanding the evidence for cross-species viral transmission from trophic interactions of parasitoid wasps and their hosts.
Braz J Microbiol. 2025 Mar;56(1):191-202. doi: 10.1007/s42770-024-01596-4. Epub 2025 Jan 10.
4
Structure of the Nipah virus polymerase phosphoprotein complex.
Nat Commun. 2024 Oct 7;15(1):8673. doi: 10.1038/s41467-024-52701-y.
5
Using structure prediction of negative sense RNA virus nucleoproteins to assess evolutionary relationships.
Virus Evol. 2024 Jul 22;10(1):veae058. doi: 10.1093/ve/veae058. eCollection 2024.
6
Structure-Based Discovery of Allosteric Inhibitors Targeting a New Druggable Site in the Respiratory Syncytial Virus Polymerase.
ACS Omega. 2024 May 6;9(20):22213-22229. doi: 10.1021/acsomega.4c01207. eCollection 2024 May 21.
7
9
10
Proximity interactome analysis of Lassa polymerase reveals eRF3a/GSPT1 as a druggable target for host-directed antivirals.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2201208119. doi: 10.1073/pnas.2201208119. Epub 2022 Jul 18.

本文引用的文献

1
La protéine L des Mononegavirales.
Virologie (Montrouge). 2012 Aug 1;16(4):258-268. doi: 10.1684/vir.2012.0457.
3
Respiratory syncytial virus polymerase can initiate transcription from position 3 of the leader promoter.
J Virol. 2013 Mar;87(6):3196-207. doi: 10.1128/JVI.02862-12. Epub 2013 Jan 2.
4
The structure of native influenza virion ribonucleoproteins.
Science. 2012 Dec 21;338(6114):1634-7. doi: 10.1126/science.1228172. Epub 2012 Nov 22.
5
Organization of the influenza virus replication machinery.
Science. 2012 Dec 21;338(6114):1631-4. doi: 10.1126/science.1227270. Epub 2012 Nov 22.
6
The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter.
PLoS Pathog. 2012;8(10):e1002980. doi: 10.1371/journal.ppat.1002980. Epub 2012 Oct 18.
7
Critical phosphoprotein elements that regulate polymerase architecture and function in vesicular stomatitis virus.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14628-33. doi: 10.1073/pnas.1209147109. Epub 2012 Aug 20.
8
Ensemble structure of the modular and flexible full-length vesicular stomatitis virus phosphoprotein.
J Mol Biol. 2012 Oct 19;423(2):182-97. doi: 10.1016/j.jmb.2012.07.003. Epub 2012 Jul 9.
9
Architecture and regulation of negative-strand viral enzymatic machinery.
RNA Biol. 2012 Jul;9(7):941-8. doi: 10.4161/rna.20345. Epub 2012 Jul 1.
10
Mechanism of RNA synthesis initiation by the vesicular stomatitis virus polymerase.
EMBO J. 2012 Mar 7;31(5):1320-9. doi: 10.1038/emboj.2011.483. Epub 2012 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验