Suppr超能文献

通过表面受限的共识 DNA 双链体捕获野生型 p53 蛋白的灵敏化学发光检测。

Sensitive chemiluminescence detection of wild-type p53 protein captured by surface-confined consensus DNA duplexes.

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China.

出版信息

Biosens Bioelectron. 2013 Sep 15;47:335-9. doi: 10.1016/j.bios.2013.03.059. Epub 2013 Apr 1.

Abstract

A novel chemiluminescence (CL) biosensor for sensitive detection of wild-type p53 protein has been proposed. The wild-type p53 protein in solution was captured by highly specific consensus double-stranded (ds) oligonucleotides (ODNs) preimmobilized onto a gold plate. The cysteine residues on the exterior of the wild-type p53 molecules were then derivatized with N-biotinoyl-N'-(6-maleimidohexanoyl) hydrazide (biotin-Mi) for the attachment of streptavidin-horseradish peroxidase (SA-HRP) complex. The attached HRP molecules could catalyze the CL reaction between luminol and H2O2, producing an enhanced CL signal. The CL intensity was dependent on the surface coverage of the HRP molecules, which was related to the concentration of wild-type p53 protein. Under the optimal experimental conditions, the CL intensity increased linearly with the concentration of wild-type p53 protein from 0.01 to 0.5nM. The detection limit was estimated to be 3.8pM. The proposed method has been successfully utilized for the assay of wild-type p53 protein in normal and cancer cell lysates. The sensing protocol is sensitive, cost-effective, and holds great promise for clinical diagnosis.

摘要

提出了一种用于灵敏检测野生型 p53 蛋白的新型化学发光(CL)生物传感器。溶液中的野生型 p53 蛋白通过高度特异性的共识双链(ds)寡核苷酸(ODNs)预先固定在金板上被捕获。然后,野生型 p53 分子外表面上的半胱氨酸残基用 N-生物素酰基-N'-(6-马来酰亚胺基己酰基)酰肼(生物素-Mi)衍生化,用于连接链霉亲和素-辣根过氧化物酶(SA-HRP)复合物。连接的 HRP 分子可以催化发光氨和 H2O2 之间的 CL 反应,产生增强的 CL 信号。CL 强度取决于 HRP 分子的表面覆盖率,这与野生型 p53 蛋白的浓度有关。在最佳实验条件下,CL 强度随野生型 p53 蛋白浓度从 0.01 到 0.5nM 线性增加。检测限估计为 3.8pM。该方法已成功用于正常和癌细胞裂解物中野生型 p53 蛋白的测定。该传感方案具有灵敏度高、成本效益高的特点,有望用于临床诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验