Biosciences Division, Argonne National Laboratory, Lemont, Illinois, 60439; The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, Illinois, 60439; Structural Biology Center, Argonne National Laboratory, Lemont, Illinois, 60439.
Proteins. 2013 Oct;81(10):1709-26. doi: 10.1002/prot.24305. Epub 2013 Jul 23.
Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.
木质素占植物生物质的 15-25%,是土壤微生物利用的主要环境碳源。要获得这种能源,需要真菌和细菌酶的作用将木质素聚合物分解成一系列复杂的芳香族化合物,这些化合物可以被运输到细胞中。为了更好地理解微生物对木质素的利用,我们对与这些化合物相互作用的 ATP 结合盒转运蛋白的溶质结合蛋白的分子特性进行了表征。功能筛选和结构研究的结合,确定了溶质结合蛋白对木质素衍生的芳香族化合物(如对香豆酸、3-苯丙酸和具有更复杂环取代的化合物)的结合特异性。基于热稳定性的配体筛选确定了几个结合蛋白簇,它们根据芳香环取代基的大小或数量表现出偏好。这些簇的蛋白-配体复合物的多个 X 射线晶体结构确定了木质素衍生芳香族化合物结合特异性的分子基础。这些筛选和结构数据为这些溶质结合蛋白提供了新的功能分配,可以用来推断它们的转运特异性。这些蛋白质的功能作用和分子结合特异性的知识将支持对将这些化合物引导到中心代谢途径的外围途径的特定酶和调节蛋白的鉴定,并提高基于序列的功能注释方法对这些蛋白质家族的预测能力。