Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103, West Bengal, India.
Nanotechnology. 2013 May 31;24(21):215703. doi: 10.1088/0957-4484/24/21/215703. Epub 2013 Apr 26.
Bismuth telluride (Bi₂Te₃) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi₂Te₃ nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV-vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi₂Te₃ nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI-Bi₂Te₃ nanocomposite with a core-shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi₂Te₃. At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI-Bi₂Te₃ nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials.
铋碲化物(Bi₂Te₃)纳米棒和聚苯胺(PANI)纳米颗粒分别通过溶剂热法和化学氧化法合成。采用原位聚合的方法,合成了由结构有序的聚苯胺优先沿 Bi₂Te₃纳米棒模板表面生长而成的纳米复合材料。X 射线粉末衍射、紫外-可见和拉曼光谱分析证实了 Bi₂Te₃纳米棒上聚苯胺的高度有序链结构,导致掺杂程度更高、链迁移率更高,从而提高了热电性能。在 380 K 以上,具有核壳/电缆状结构的 PANI-Bi₂Te₃纳米复合材料的热电功率因子高于纯 PANI 或 Bi₂Te₃。在室温下,由于在 PANI-Bi₂Te₃纳米电缆结构中设计的纳米界面对声子的选择性散射,复合材料的热导率低于其纯组分的热导率。在室温下,该纳米复合材料的品质因数与文献中报道的块状聚合物基复合热电材料的值相当。