Institute of Applied Physics, Institute of Toxicology and Genetics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.
J Phys Chem B. 2013 Oct 24;117(42):12800-6. doi: 10.1021/jp402005m. Epub 2013 May 10.
Enzymology at the single-molecule level by using fluorescence resonance energy transfer (smFRET) offers unprecedented insight into mechanistic aspects of catalytic reactions. Implementing spatiotemporal control of the reaction by using an external trigger is highly valuable in these challenging experiments. Here, we have incorporated a light-cleavable caging moiety into specific nucleotides of the Diels-Alderase (DAse) ribozyme. In this way, the folding energy landscape was significantly perturbed, and the catalytic activity was essentially suppressed. A careful smFRET efficiency histogram analysis at various Mg(2+) ion concentrations revealed an additional intermediate state that is not observed for the unmodified DAse ribozyme. We also observed that only a fraction of DAse molecules returns to the native state upon cleavage of the caged group by UV light. These constructs are attractive model RNA systems for further real-time single-molecule observation of the coupling between conformational changes and catalytic activity.
通过荧光共振能量转移(smFRET)在单分子水平上进行的酶学研究为催化反应的机械方面提供了前所未有的深入了解。在这些具有挑战性的实验中,通过外部触发来实现反应的时空控制具有非常高的价值。在这里,我们将光可裂解的笼状部分整合到 Diels-Alderase(DAse)核酶的特定核苷酸中。通过这种方式,折叠能量景观受到了显著的干扰,催化活性基本上被抑制。在不同的 Mg(2+)离子浓度下进行仔细的 smFRET 效率直方图分析,揭示了一个额外的中间状态,而未修饰的 DAse 核酶则没有观察到这个状态。我们还观察到,只有一部分 DAse 分子在通过紫外光裂解笼状基团后会回到天然状态。这些构建体是吸引人的 RNA 模型系统,可用于进一步实时观察构象变化和催化活性之间的耦合。