Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
BMC Cancer. 2013 Apr 28;13:211. doi: 10.1186/1471-2407-13-211.
New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or β-catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the β-catenin phosphorylation complex.
This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls.
Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models.
Findings reported here uncovered deregulation of specific components of the Wnt pathway in both human and murine lung cancer models. Repressing TNKS activity through either genetic or pharmacological approaches antagonized canonical Wnt signaling, reduced murine and human lung cancer cell line growth, and decreased tumor formation in mouse models. Taken together, these findings implicate the use of TNKS inhibitors to target the Wnt pathway to combat lung cancer.
新的药物靶点迫切需要治疗或预防肺癌,这是男性和女性癌症死亡的最常见原因。本研究确定了这样的一个靶点,即经典的 Wnt 信号通路,该通路在癌症中失调,包括缺乏腺瘤性息肉病或β-连环蛋白突变的癌症。两种多聚 ADP-核糖聚合酶 (PARP) 酶调节经典 Wnt 活性:端锚聚合酶 (TNKS) 1 和 TNKS2。这些酶聚 ADP-核糖基化 (PARsylate) 并使轴蛋白不稳定,轴蛋白是 β-连环蛋白磷酸化复合物的关键成分。
本研究使用综合基因谱来揭示在相对于正常肺的小鼠转基因和人类肺癌中 Wnt 通路的失调。研究了 TNKS 在小鼠和人类肺癌细胞系中的遗传和药物靶向的抗肿瘤后果,并通过植入相对于对照物表达降低的 TNKS 的小鼠转基因肺癌细胞来体内验证。
比较小鼠转基因细胞周期蛋白 E 肺癌模型中恶性与正常组织的 Wnt 途径成员的微阵列分析显示,Wnt 途径成分包括 TNKS1 和 TNKS2 的失调。实时 PCR 检测独立证实了配对的小鼠和人肺癌组织中的这些结果。TNKS 抑制剂 XAV939 和 IWR-1 对人源和鼠源肺癌细胞系的单独治疗剂量依赖性地抑制细胞生长并增加细胞轴蛋白 1 和端锚聚合酶水平。这些抑制剂还抑制了 Wnt 反应性荧光素酶构建体的表达,暗示 Wnt 途径赋予了这些抗肿瘤作用。用 siRNA 或 shRNA 单独或联合敲低 TNKS1 和 TNKS2 可降低肺癌细胞的生长,稳定轴蛋白,并抑制小鼠异种移植和同源肺癌模型中的肿瘤形成。
本研究报告的发现揭示了人类和小鼠肺癌模型中特定 Wnt 途径成分的失调。通过遗传或药物方法抑制 TNKS 活性拮抗了经典的 Wnt 信号通路,降低了小鼠和人肺癌细胞系的生长,并减少了小鼠模型中的肿瘤形成。综上所述,这些发现表明使用 TNKS 抑制剂靶向 Wnt 通路来治疗肺癌。