Department of Earth Sciences and Centre for Geobiology, University of Bergen, N-5007 Bergen, Norway.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8020-4. doi: 10.1073/pnas.1221965110. Epub 2013 Apr 29.
The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia-Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture a view through multiple trophic levels in a Paleoproterozoic ecosystem. Nanoscale analysis of pyritic Gunflintia (sheaths) and Huroniospora (cysts) reveals differing relic carbon and nitrogen distributions caused by contrasting spectra of decay and pyritization between taxa, reflecting in part their primary organic compositions. In situ sulfur isotope measurements from individual microfossils (δ(34)S(V-CDT) +6.7‰ to +21.5‰) show that pyritization was mediated by sulfate-reducing microbes within sediment pore waters whose sulfate ion concentrations rapidly became depleted, owing to occlusion of pore space by coeval silicification. Three-dimensional nanotomography reveals additional pyritized biomaterial, including hollow, cellular epibionts and extracellular polymeric substances, showing a preference for attachment to Gunflintia over Huroniospora and interpreted as components of a saprophytic heterotrophic, decomposing community. This work also extends the record of remarkable biological preservation in pyrite back to the Paleoproterozoic and provides criteria to assess the authenticity of even older pyritized microstructures that may represent some of the earliest evidence for life on our planet.
1.88 亿年的格伦因生物群是最著名的前寒武纪微生物化石库之一,为大洋氧化还原结构和化学变化时期的生物圈提供了关键记录。在这里,我们报告了来自加拿大 Schreiber 地区标志性自养 Gunflintia-Huroniospora 微生物组合的黄铁矿化复制品,这些复制品有助于从多个营养层捕捉古元古代生态系统的视图。黄铁矿化 Gunflintia(鞘)和 Huroniospora(胞囊)的纳米尺度分析揭示了不同的 relic 碳和氮分布,这是由于不同分类群之间的衰变和黄铁矿化光谱不同,部分反映了它们的原始有机组成。来自单个微生物的原位硫同位素测量(δ(34)S(V-CDT) +6.7‰ 至 +21.5‰)表明,黄铁矿化是由硫酸盐还原微生物在沉积物孔隙水中介导的,由于同期硅化作用占据了孔隙空间,导致孔隙水中的硫酸根离子浓度迅速耗尽。三维纳米断层扫描揭示了额外的黄铁矿化生物材料,包括中空的、细胞状的附生生物和细胞外聚合物物质,它们优先附着在 Gunflintia 上,而不是 Huroniospora 上,被解释为腐生异养、分解群落的组成部分。这项工作还将黄铁矿中非凡生物保存的记录追溯到古元古代,并提供了评估甚至更古老的黄铁矿化微观结构真实性的标准,这些结构可能代表了我们星球上最早的生命证据之一。