Flam E
Ostomy Wound Manage. 1990 May-Jun;28:48-54.
The skin of a patient at risk of developing pressure ulcers can resist deterioration if the conditions that weaken it are controlled. The purpose of this study is to determine the relationships between hydration level, skin temperature, and friction in patients at risk of development or reoccurrence of pressure ulcers and in patients with newly created surgical flaps. Two systems were considered: the standard hospital mattress covered with a thick occlusive plastic film and a 50/50 cotton/polyester bed sheet and the KinAir and the TheraPulse support systems with nylon/High Air Loss GORE-TEX (n/HAL) laminate cushions and coverlets. The moisture vapor management and aeration capabilities of the support system materials were determined, and the frictional force generated against the skin was measured. The results revealed that excessive hydration increases the level of friction against the skin while at the same time reducing the mechanical properties of the protective skin layers. The n/HAL laminate coverlet also had a significantly lower skin friction coefficient than the 50/50 cotton/polyester bed sheet. The significance of these findings is that over-hydration accelerates the abrading action on the skin by increasing the frictional force and decreasing the shear resistance of the skin.