Suppr超能文献

一种用于任意截面嵌入式波导中阻尼泄漏导波频散分析的耦合 SAFE-2.5D BEM 方法。

A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section.

机构信息

Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università degli Studi di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

出版信息

Ultrasonics. 2013 Sep;53(7):1227-41. doi: 10.1016/j.ultras.2013.03.003. Epub 2013 Mar 18.

Abstract

The paper presents a Semi-Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (BEM) for the computation of the dispersion properties of viscoelastic waveguides with arbitrary cross-section and embedded in unbounded isotropic viscoelastic media. Attenuation of guided modes is described through the imaginary component of the axial wavenumber, which accounts for material damping, introduced via linear viscoelastic constitutive relations, as well as energy loss due to radiation of bulk waves in the surrounding media. Energy radiation is accounted in the SAFE model by introducing an equivalent dynamic stiffness matrix for the surrounding medium, which is derived from a regularized 2.5D boundary element formulation. The resulting dispersive wave equation is configured as a nonlinear eigenvalue problem in the complex axial wavenumber. The eigenvalue problem is reduced to a linear one inside a chosen contour in the complex plane of the axial wavenumber by using a contour integral method. Poles of leaky and evanescent modes are obtained by choosing appropriately the phase of the wavenumbers normal to the interface in compliance with the nature of the waves in the surrounding medium. Finally, the obtained eigensolutions are post-processed to compute the energy velocity and the radiated wavefield in the surrounding domain. The reliability of the method is first validated on existing results for waveguides of circular cross sections embedded in elastic and viscoelastic media. Next, the potential of the proposed numerical framework is shown by computing the dispersion properties for a square steel bar embedded in grout and for an H-shaped steel pile embedded in soil.

摘要

本文提出了一种半解析有限元(SAFE)公式,结合 2.5D 边界元方法(BEM),用于计算具有任意横截面并嵌入各向同性粘弹性无限介质中的粘弹性波导的色散特性。通过轴向波数的虚部来描述导模的衰减,该虚部考虑了材料阻尼,通过线性粘弹性本构关系引入,以及周围介质中体波辐射引起的能量损失。通过引入周围介质的等效动刚度矩阵,在 SAFE 模型中考虑了能量辐射,该矩阵是从正则化的 2.5D 边界元公式推导出来的。所得的色散波方程在复轴向波数中配置为非线性特征值问题。通过使用轮廓积分方法,在复平面上选择的轴向波数轮廓内,将特征值问题简化为线性问题。通过选择与周围介质中波的性质一致的界面法向波数的相位,获得泄漏和消逝模式的极点。最后,通过对获得的特征解进行后处理,计算周围域中的能量速度和辐射波场。首先通过验证嵌入弹性和粘弹性介质中的圆形横截面波导的现有结果来验证该方法的可靠性。然后,通过计算嵌入灌浆中的方形钢筋和嵌入土壤中的 H 型钢桩的色散特性,展示了所提出的数值框架的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验