Suppr超能文献

探究突触前酪氨酸激酶受体调节纹状体多巴胺动态的能力。

Probing the ability of presynaptic tyrosine kinase receptors to regulate striatal dopamine dynamics.

机构信息

Department of Chemistry, Wayne State University , Detroit, MI 48202, United States.

出版信息

ACS Chem Neurosci. 2013 May 15;4(5):895-904. doi: 10.1021/cn4000742. Epub 2013 May 8.

Abstract

Brain-derived neurotrophic factor (BDNF) modulates the synaptic transmission of several monoaminergic neuronal systems. Molecular techniques using synapatosomes in previous studies have suggested that BDNF's receptor, tyrosine kinases (Trk), can quickly regulate dopamine release and transporter dynamics. Our main objective in this study is to determine whether slice fast scan cyclic voltammetry can be used to investigate the role of the TrkB receptor on dopamine release and uptake processes in the caudate-putamen. Fast scan cyclic voltammetry measured dopamine release and uptake rates in the presence of BDNF, or its agonist 7,8-dihydroxyflavone, or a TrkB inhibitor K252a. Superfusion of BDNF led to partial recovery of the electrically stimulated dopamine release response in BDNF(+/-) mice which is blunted compared to wildtype mice, with no effect in wildtype mice. Conversely, infusion of 7,8-dihydroxyflavone increased electrically stimulated dopamine release in wildtype mice with no difference in BDNF(+/-) mice. Overall, BDNF and 7,8-dihydroxyflavone had no effect on dopamine uptake rates. Concentrations greater than 3 μM 7,8-dihydroxyflavone affected dopamine uptake rates in BDNF(+/-) mice only. To demonstrate that BDNF and 7,8-dihydroxyflavone modulate dopamine release by activating the TrkB receptor, both genotypes were pretreated with K252a. K252a was able to block BDNF and 7,8-DHF induced increases during stimulated dopamine release in BDNF(+/-) and wildtype mice, respectively. Fast scan cyclic voltammetry demonstrates that acute TrkB activation potentiates dopamine release in both genotypes.

摘要

脑源性神经营养因子(BDNF)调节几种单胺能神经元系统的突触传递。先前使用突触小体的分子技术研究表明,BDNF 的受体酪氨酸激酶(Trk)可以快速调节多巴胺的释放和转运体动力学。我们在这项研究中的主要目标是确定切片快速扫描循环伏安法是否可用于研究 TrkB 受体在尾壳核多巴胺释放和摄取过程中的作用。快速扫描循环伏安法在 BDNF 或其激动剂 7,8-二羟基黄酮或 TrkB 抑制剂 K252a 的存在下测量多巴胺的释放和摄取速率。BDNF 的灌流导致 BDNF(+/-)小鼠电刺激多巴胺释放反应的部分恢复,与野生型小鼠相比,这种恢复作用减弱,而野生型小鼠则没有这种作用。相反,7,8-二羟基黄酮的输注增加了野生型小鼠电刺激多巴胺的释放,但在 BDNF(+/-)小鼠中没有差异。总的来说,BDNF 和 7,8-二羟基黄酮对多巴胺摄取率没有影响。浓度大于 3μM 的 7,8-二羟基黄酮仅影响 BDNF(+/-)小鼠的多巴胺摄取率。为了证明 BDNF 和 7,8-二羟基黄酮通过激活 TrkB 受体来调节多巴胺的释放,两种基因型均用 K252a 预处理。K252a 能够阻断 BDNF 和 7,8-DHF 在 BDNF(+/-)和野生型小鼠的刺激多巴胺释放期间分别诱导的增加。快速扫描循环伏安法表明,急性 TrkB 激活增强了两种基因型的多巴胺释放。

相似文献

1
Probing the ability of presynaptic tyrosine kinase receptors to regulate striatal dopamine dynamics.
ACS Chem Neurosci. 2013 May 15;4(5):895-904. doi: 10.1021/cn4000742. Epub 2013 May 8.
2
Aberrant striatal dopamine transmitter dynamics in brain-derived neurotrophic factor-deficient mice.
J Neurochem. 2012 Feb;120(3):385-95. doi: 10.1111/j.1471-4159.2011.07531.x. Epub 2011 Dec 2.
3
Companions reverse stressor-induced decreases in neurogenesis and cocaine conditioning possibly by restoring BDNF and NGF levels in dentate gyrus.
Psychoneuroendocrinology. 2013 Mar;38(3):425-37. doi: 10.1016/j.psyneuen.2012.07.002. Epub 2012 Jul 23.
4
Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro.
Neuroscience. 2017 Aug 15;357:75-83. doi: 10.1016/j.neuroscience.2017.05.053. Epub 2017 Jun 14.
7
BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of HS in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress.
Neuromolecular Med. 2018 Jun;20(2):252-261. doi: 10.1007/s12017-018-8489-7. Epub 2018 Apr 27.
8
Opposing effects of APP/PS1 and TrkB.T1 genotypes on midbrain dopamine neurons and stimulated dopamine release in vivo.
Brain Res. 2015 Oct 5;1622:452-65. doi: 10.1016/j.brainres.2015.07.006. Epub 2015 Jul 11.
9
Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation.
Biochim Biophys Acta. 2015 May;1852(5):862-72. doi: 10.1016/j.bbadis.2015.01.018. Epub 2015 Feb 3.
10
TrkB/BDNF-dependent striatal plasticity and behavior in a genetic model of epilepsy: modulation by valproic acid.
Neuropsychopharmacology. 2010 Jun;35(7):1531-40. doi: 10.1038/npp.2010.23. Epub 2010 Mar 3.

引用本文的文献

1
Electrochemistry of Flavonoids.
Molecules. 2023 Nov 16;28(22):7618. doi: 10.3390/molecules28227618.
2
PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III.
Exp Mol Med. 2023 Nov;55(11):2357-2375. doi: 10.1038/s12276-023-01104-y. Epub 2023 Nov 1.
3
Voluntary Exercise Boosts Striatal Dopamine Release: Evidence for the Necessary and Sufficient Role of BDNF.
J Neurosci. 2022 Jun 8;42(23):4725-4736. doi: 10.1523/JNEUROSCI.2273-21.2022. Epub 2022 May 16.
4
Real-time dopamine measurement in awake monkeys.
PLoS One. 2014 Jun 12;9(6):e98692. doi: 10.1371/journal.pone.0098692. eCollection 2014.
5
7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease.
Neuropsychopharmacology. 2014 Feb;39(3):638-50. doi: 10.1038/npp.2013.243. Epub 2013 Sep 11.

本文引用的文献

1
Effects of TrkB agonist 7,8-dihydroxyflavone on sensory gating deficits in mice after administration of methamphetamine.
Pharmacol Biochem Behav. 2013 May;106:124-7. doi: 10.1016/j.pbb.2013.03.016. Epub 2013 Apr 6.
3
O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity.
Pharmacology. 2013;91(3-4):185-200. doi: 10.1159/000346920. Epub 2013 Feb 21.
6
Aberrant striatal dopamine transmitter dynamics in brain-derived neurotrophic factor-deficient mice.
J Neurochem. 2012 Feb;120(3):385-95. doi: 10.1111/j.1471-4159.2011.07531.x. Epub 2011 Dec 2.
7
8
Sex-dependent and region-specific changes in TrkB signaling in BDNF heterozygous mice.
Brain Res. 2011 Apr 12;1384:51-60. doi: 10.1016/j.brainres.2011.01.060. Epub 2011 Jan 31.
10
Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning.
Am J Psychiatry. 2011 Feb;168(2):163-72. doi: 10.1176/appi.ajp.2010.10030326. Epub 2010 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验