Suppr超能文献

多榔菊属 Giliopsis 谱系物种形成的遗传基础。

The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae).

机构信息

Department of Biological Sciences, University of Memphis, Memphis, TN, USA.

出版信息

Heredity (Edinb). 2013 Sep;111(3):227-37. doi: 10.1038/hdy.2013.41. Epub 2013 May 8.

Abstract

One of the most powerful drivers of speciation in plants is pollinator-mediated disruptive selection, which leads to the divergence of floral traits adapted to the morphology and behavior of different pollinators. Despite the widespread importance of this speciation mechanism, its genetic basis has been explored in only a few groups. Here, we characterize the genetic basis of pollinator-mediated divergence of two species in genus Ipomopsis, I. guttata and I. tenuifolia, using quantitative trait locus (QTL) analyses of floral traits and other variable phenotypes. We detected one to six QTLs per trait, with each QTL generally explaining small to modest amounts of the phenotypic variance of a backcross hybrid population. In contrast, flowering time and anthocyanin abundance (a metric of color variation) were controlled by a few QTLs of relatively large effect. QTLs were strongly clustered within linkage groups, with 26 of 37 QTLs localized to six marker-interval 'hotspots,' all of which harbored pleiotropic QTLs. In contrast to other studies that have examined the genetic basis of pollinator shifts, our results indicate that, in general, mutations of small to modest effect on phenotype were involved. Thus, the evolutionary transition between the distinct pollination modes of I. guttata and I. tenuifolia likely proceeded incrementally, rather than saltationally.

摘要

植物物种形成的最强大驱动力之一是传粉媒介介导的破坏性选择,它导致了适应不同传粉者形态和行为的花部特征的分歧。尽管这种物种形成机制具有广泛的重要性,但它的遗传基础仅在少数几个群体中得到了探索。在这里,我们使用花部性状和其他可变表型的数量性状位点(QTL)分析,描述了 Ipomopsis 属的两个物种 I. guttata 和 I. tenuifolia 中传粉媒介介导的分歧的遗传基础。我们在每个性状中检测到一个到六个 QTL,每个 QTL 通常解释回交杂种群体表型方差的小到中等幅度。相比之下,开花时间和花色素苷丰度(颜色变化的度量)由少数几个具有相对较大效应的 QTL 控制。QTL 在连锁群内强烈聚集,37 个 QTL 中有 26 个定位到六个标记区间的“热点”,所有这些热点都包含了多效 QTL。与其他研究检查传粉者转变的遗传基础的研究不同,我们的结果表明,通常涉及到对表型有小到中等影响的突变。因此,I. guttata 和 I. tenuifolia 之间不同传粉模式的进化转变可能是渐进的,而不是跳跃式的。

相似文献

1
The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae).
Heredity (Edinb). 2013 Sep;111(3):227-37. doi: 10.1038/hdy.2013.41. Epub 2013 May 8.
3
Adaptive differentiation in floral traits in the presence of high gene flow in scarlet gilia (Ipomopsis aggregata).
Mol Ecol. 2016 Dec;25(23):5862-5875. doi: 10.1111/mec.13752. Epub 2016 Aug 8.
5
Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus.
Evolution. 2002 Nov;56(11):2138-55. doi: 10.1111/j.0014-3820.2002.tb00139.x.
6
Context-dependent reproductive isolation mediated by floral scent and color.
Evolution. 2015 Jan;69(1):1-13. doi: 10.1111/evo.12558. Epub 2014 Dec 17.
7
The genetic architecture of traits associated with the evolution of self-pollination in Mimulus.
New Phytol. 2015 Jan;205(2):907-17. doi: 10.1111/nph.13091. Epub 2014 Oct 13.
8
Pleiotropy and the evolution of floral integration.
New Phytol. 2016 Jan;209(1):80-5. doi: 10.1111/nph.13583. Epub 2015 Jul 30.
9
The genetics of reproductive organ morphology in two Petunia species with contrasting pollination syndromes.
Planta. 2015 May;241(5):1241-54. doi: 10.1007/s00425-015-2251-2. Epub 2015 Feb 6.
10
Pollinator behaviour and plant speciation: can assortative mating and disruptive selection maintain distinct floral morphs in sympatry?
New Phytol. 2010 Oct;188(2):426-36. doi: 10.1111/j.1469-8137.2010.03438.x. Epub 2010 Aug 25.

引用本文的文献

1
Genomics of plant speciation.
Plant Commun. 2023 Sep 11;4(5):100599. doi: 10.1016/j.xplc.2023.100599. Epub 2023 Apr 11.
3
4
Testing candidate genes linked to corolla shape variation of a pollinator shift in Rhytidophyllum (Gesneriaceae).
PLoS One. 2022 Jul 19;17(7):e0267540. doi: 10.1371/journal.pone.0267540. eCollection 2022.
5
Evolutionary ecology of nectar.
Ann Bot. 2019 Jan 23;123(2):247-261. doi: 10.1093/aob/mcy132.
8
A dominant-negative actin mutation alters corolla tube width and pollinator visitation in Mimulus lewisii.
New Phytol. 2017 Mar;213(4):1936-1944. doi: 10.1111/nph.14281. Epub 2016 Nov 7.
9
Accessibility, constraint, and repetition in adaptive floral evolution.
Dev Biol. 2016 Nov 1;419(1):175-183. doi: 10.1016/j.ydbio.2016.05.003. Epub 2016 May 3.

本文引用的文献

1
PERSPECTIVE: A CRITIQUE OF SEWALL WRIGHT'S SHIFTING BALANCE THEORY OF EVOLUTION.
Evolution. 1997 Jun;51(3):643-671. doi: 10.1111/j.1558-5646.1997.tb03650.x.
2
A NEO-DARWINIAN COMMENTARY ON MACROEVOLUTION.
Evolution. 1982 May;36(3):474-498. doi: 10.1111/j.1558-5646.1982.tb05068.x.
3
EFFECTS OF DIFFERENTIAL POLLEN-TUBE GROWTH ON HYBRIDIZATION IN THE LOUISIANA IRISES.
Evolution. 1996 Oct;50(5):1871-1878. doi: 10.1111/j.1558-5646.1996.tb03574.x.
5
THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION.
Evolution. 1998 Aug;52(4):935-949. doi: 10.1111/j.1558-5646.1998.tb01823.x.
6
COMPONENTS OF PHENOTYPIC SELECTION: POLLEN EXPORT AND FLOWER COROLLA WIDTH IN IPOMOPSIS AGGREGATA.
Evolution. 1991 Sep;45(6):1458-1467. doi: 10.1111/j.1558-5646.1991.tb02648.x.
7
Adaptive evolution of multiple traits through multiple mutations at a single gene.
Science. 2013 Mar 15;339(6125):1312-6. doi: 10.1126/science.1233213.
8
Finding the sources of missing heritability in a yeast cross.
Nature. 2013 Feb 14;494(7436):234-7. doi: 10.1038/nature11867. Epub 2013 Feb 3.
9
Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.
G3 (Bethesda). 2012 Nov;2(11):1291-303. doi: 10.1534/g3.112.003269. Epub 2012 Nov 1.
10
Pollinator-mediated selection on flower color allele drives reinforcement.
Science. 2012 Mar 2;335(6072):1090-2. doi: 10.1126/science.1215198. Epub 2012 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验