Suppr超能文献

SNP 集关联分析在全基因组关联研究中的应用。

SNP set association analysis for genome-wide association studies.

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.

出版信息

PLoS One. 2013 May 3;8(5):e62495. doi: 10.1371/journal.pone.0062495. Print 2013.

Abstract

Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and ≥ 2 causal SNPs model. Our simulation results show that all of these methods can control the type I error at the nominal significance level. SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer (NSCLC) in Han Chinese population.

摘要

全基因组关联研究(GWAS)是一种很有前途的方法,可以根据数百万个单核苷酸多态性(SNP)来识别疾病的常见遗传变异。为了避免在单基因座关联研究中由于过多校正多重比较而导致的低功效,已经提出了一些基于基因组特征将 SNP 组合成 SNP 集的方法,然后检验 SNP 集的联合效应。我们比较了主成分分析(PCA)、有监督主成分分析(SPCA)、核主成分分析(KPCA)和切片逆回归(SIR)的性能。在 0、1 和≥2 个因果 SNP 模型的情况下生成模拟 SNP 集。我们的模拟结果表明,所有这些方法都可以在名义显著水平上控制 I 型错误。在不同的连锁不平衡结构和模拟数据集的次要等位基因频率设置下,SPCA 始终比其他方法更有效。我们还将这四种方法应用于汉族人群的非小细胞肺癌(NSCLC)的真实 GWAS 中。

相似文献

1
SNP set association analysis for genome-wide association studies.
PLoS One. 2013 May 3;8(5):e62495. doi: 10.1371/journal.pone.0062495. Print 2013.
2
Weighted SNP set analysis in genome-wide association study.
PLoS One. 2013 Sep 30;8(9):e75897. doi: 10.1371/journal.pone.0075897. eCollection 2013.
3
Association test based on SNP set: logistic kernel machine based test vs. principal component analysis.
PLoS One. 2012;7(9):e44978. doi: 10.1371/journal.pone.0044978. Epub 2012 Sep 13.
4
CLPTM1L polymorphism as a protective factor for lung cancer: a case-control study in southern Chinese population.
Tumour Biol. 2016 Aug;37(8):10533-8. doi: 10.1007/s13277-016-4938-9. Epub 2016 Feb 6.
6
Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies.
Genet Epidemiol. 2011 Nov;35(7):620-31. doi: 10.1002/gepi.20610. Epub 2011 Aug 4.
7
TERT-rs33963617 and CLPTM1L-rs77518573 reduce the risk of non-small cell lung cancer in Chinese population.
Gene. 2020 Mar 20;731:144357. doi: 10.1016/j.gene.2020.144357. Epub 2020 Jan 11.
8
Replication study in Chinese population and meta-analysis supports association of the 5p15.33 locus with lung cancer.
PLoS One. 2013 Apr 30;8(4):e62485. doi: 10.1371/journal.pone.0062485. Print 2013.
9

引用本文的文献

1
SNP rs9387478 at ROS1-DCBLD1 Locus is Significantly Associated with Lung Cancer Risk and Poor Survival in Indian Population.
Asian Pac J Cancer Prev. 2022 Oct 1;23(10):3553-3561. doi: 10.31557/APJCP.2022.23.10.3553.
2
Genome-Wide Study Updates in the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN).
Front Genet. 2019 Nov 15;10:1084. doi: 10.3389/fgene.2019.01084. eCollection 2019.
3
Mendelian randomization with fine-mapped genetic data: Choosing from large numbers of correlated instrumental variables.
Genet Epidemiol. 2017 Dec;41(8):714-725. doi: 10.1002/gepi.22077. Epub 2017 Sep 25.
6
A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies.
PLoS One. 2016 Jun 3;11(6):e0156895. doi: 10.1371/journal.pone.0156895. eCollection 2016.
7
Adaptive Set-Based Methods for Association Testing.
Genet Epidemiol. 2016 Feb;40(2):113-22. doi: 10.1002/gepi.21950. Epub 2015 Dec 28.
9
A strategy to identify dominant point mutant modifiers of a quantitative trait.
G3 (Bethesda). 2014 Apr 17;4(6):1113-21. doi: 10.1534/g3.114.010595.

本文引用的文献

1
Association test based on SNP set: logistic kernel machine based test vs. principal component analysis.
PLoS One. 2012;7(9):e44978. doi: 10.1371/journal.pone.0044978. Epub 2012 Sep 13.
2
Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk.
Nat Genet. 2012 Nov;44(11):1182-4. doi: 10.1038/ng.2417. Epub 2012 Sep 23.
3
A comparison of gene region simulation methods.
PLoS One. 2012;7(7):e40925. doi: 10.1371/journal.pone.0040925. Epub 2012 Jul 18.
7
Gene- or region-based association study via kernel principal component analysis.
BMC Genet. 2011 Aug 26;12:75. doi: 10.1186/1471-2156-12-75.
9
The emerging role of FK506-binding proteins as cancer biomarkers: a focus on FKBPL.
Biochem Soc Trans. 2011 Apr;39(2):663-8. doi: 10.1042/BST0390663.
10
Principal component analysis based methods in bioinformatics studies.
Brief Bioinform. 2011 Nov;12(6):714-22. doi: 10.1093/bib/bbq090. Epub 2011 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验