Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America.
PLoS One. 2013 May 3;8(5):e62615. doi: 10.1371/journal.pone.0062615. Print 2013.
Studying population isolates with large, complex pedigrees has many advantages for discovering genetic susceptibility loci; however, statistical analyses can be computationally challenging. Allelic association tests need to be corrected for relatedness among study participants, and linkage analyses require subdividing and simplifying the pedigree structures. We have extended GenomeSIMLA to simulate SNP data in complex pedigree structures based on an Amish pedigree to generate the same structure and distribution of sampled individuals. We evaluated type 1 error rates when no disease SNP was simulated and power when disease SNPs with recessive, additive, and dominant modes of inheritance and odds ratios of 1.1, 1.5, 2.0, and 5.0 were simulated. We generated subpedigrees with a maximum bit-size of 24 using PedCut and performed two-point and multipoint linkage using Merlin. We also ran MQLS on the subpedigrees and unified pedigree. We saw no inflation of type 1 error when running MQLS on either the whole pedigrees or the sub-pedigrees, and we saw low type 1 error for two-point and multipoint linkage. Power was reduced when running MQLS on the subpedigrees versus the whole pedigree, and power was low for two-point and multipoint linkage analyses of the subpedigrees. These data suggest that MQLS has appropriate type 1 error rates in our Amish pedigree structure, and while type 1 error does not seem to be affected when dividing the pedigree prior to linkage analysis, power to detect linkage is diminished when the pedigree is divided.
研究具有大而复杂家系的人群分离体对于发现遗传易感性位点有很多优势;然而,统计分析可能具有计算挑战性。等位基因关联测试需要校正研究参与者之间的亲缘关系,连锁分析需要细分和简化家系结构。我们已经扩展了 GenomeSIMLA,以基于 Amish 家系模拟复杂家系结构中的 SNP 数据,以生成具有相同结构和采样个体分布的 SNP 数据。我们评估了当没有模拟疾病 SNP 时的Ⅰ类错误率,以及当模拟具有隐性、加性和显性遗传模式的疾病 SNP 时的功效,其遗传率分别为 1.1、1.5、2.0 和 5.0,优势比分别为 1.1、1.5、2.0 和 5.0。我们使用 PedCut 生成最大位大小为 24 的子系,并使用 Merlin 进行两点和多点连锁分析。我们还在子系和统一系上运行了 MQLS。当我们在整个系或子系上运行 MQLS 时,没有看到Ⅰ类错误的膨胀,并且我们看到两点和多点连锁的Ⅰ类错误很低。当我们在子系上运行 MQLS 时,与在整个系上运行相比,功效降低,并且子系的两点和多点连锁分析的功效较低。这些数据表明,MQLS 在我们的 Amish 家系结构中具有适当的Ⅰ类错误率,并且当在进行连锁分析之前划分家系时,Ⅰ类错误似乎不会受到影响,但是当划分家系时,检测连锁的功效会降低。