Suppr超能文献

评估二分类性状的大型家系分析中的功效和Ⅰ型错误。

Evaluating power and type 1 error in large pedigree analyses of binary traits.

机构信息

Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America.

出版信息

PLoS One. 2013 May 3;8(5):e62615. doi: 10.1371/journal.pone.0062615. Print 2013.

Abstract

Studying population isolates with large, complex pedigrees has many advantages for discovering genetic susceptibility loci; however, statistical analyses can be computationally challenging. Allelic association tests need to be corrected for relatedness among study participants, and linkage analyses require subdividing and simplifying the pedigree structures. We have extended GenomeSIMLA to simulate SNP data in complex pedigree structures based on an Amish pedigree to generate the same structure and distribution of sampled individuals. We evaluated type 1 error rates when no disease SNP was simulated and power when disease SNPs with recessive, additive, and dominant modes of inheritance and odds ratios of 1.1, 1.5, 2.0, and 5.0 were simulated. We generated subpedigrees with a maximum bit-size of 24 using PedCut and performed two-point and multipoint linkage using Merlin. We also ran MQLS on the subpedigrees and unified pedigree. We saw no inflation of type 1 error when running MQLS on either the whole pedigrees or the sub-pedigrees, and we saw low type 1 error for two-point and multipoint linkage. Power was reduced when running MQLS on the subpedigrees versus the whole pedigree, and power was low for two-point and multipoint linkage analyses of the subpedigrees. These data suggest that MQLS has appropriate type 1 error rates in our Amish pedigree structure, and while type 1 error does not seem to be affected when dividing the pedigree prior to linkage analysis, power to detect linkage is diminished when the pedigree is divided.

摘要

研究具有大而复杂家系的人群分离体对于发现遗传易感性位点有很多优势;然而,统计分析可能具有计算挑战性。等位基因关联测试需要校正研究参与者之间的亲缘关系,连锁分析需要细分和简化家系结构。我们已经扩展了 GenomeSIMLA,以基于 Amish 家系模拟复杂家系结构中的 SNP 数据,以生成具有相同结构和采样个体分布的 SNP 数据。我们评估了当没有模拟疾病 SNP 时的Ⅰ类错误率,以及当模拟具有隐性、加性和显性遗传模式的疾病 SNP 时的功效,其遗传率分别为 1.1、1.5、2.0 和 5.0,优势比分别为 1.1、1.5、2.0 和 5.0。我们使用 PedCut 生成最大位大小为 24 的子系,并使用 Merlin 进行两点和多点连锁分析。我们还在子系和统一系上运行了 MQLS。当我们在整个系或子系上运行 MQLS 时,没有看到Ⅰ类错误的膨胀,并且我们看到两点和多点连锁的Ⅰ类错误很低。当我们在子系上运行 MQLS 时,与在整个系上运行相比,功效降低,并且子系的两点和多点连锁分析的功效较低。这些数据表明,MQLS 在我们的 Amish 家系结构中具有适当的Ⅰ类错误率,并且当在进行连锁分析之前划分家系时,Ⅰ类错误似乎不会受到影响,但是当划分家系时,检测连锁的功效会降低。

相似文献

1
Evaluating power and type 1 error in large pedigree analyses of binary traits.
PLoS One. 2013 May 3;8(5):e62615. doi: 10.1371/journal.pone.0062615. Print 2013.
2
Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.
Genet Epidemiol. 2017 Apr;41(3):174-186. doi: 10.1002/gepi.21988. Epub 2016 Dec 12.
3
Parkinson disease loci in the mid-western Amish.
Hum Genet. 2013 Nov;132(11):1213-21. doi: 10.1007/s00439-013-1316-1. Epub 2013 Jun 21.
5
Rare variants and loci for age-related macular degeneration in the Ohio and Indiana Amish.
Hum Genet. 2019 Oct;138(10):1171-1182. doi: 10.1007/s00439-019-02050-4. Epub 2019 Jul 31.
6
Design considerations for genetic linkage and association studies.
Methods Mol Biol. 2012;850:237-62. doi: 10.1007/978-1-61779-555-8_13.
7
PedStr software for cutting large pedigrees for haplotyping, IBD computation and multipoint linkage analysis.
Ann Hum Genet. 2009 Sep;73(Pt 5):527-31. doi: 10.1111/j.1469-1809.2009.00531.x. Epub 2009 Jul 9.
9
MQScore_SNP software for multipoint parametric linkage analysis of quantitative traits in large pedigrees.
Ann Hum Genet. 2010 May;74(3):286-9. doi: 10.1111/j.1469-1809.2010.00576.x.
10
SNP-based linkage analysis in extended pedigrees: comparison between two alternative approaches.
Hum Hered. 2014;78(1):27-37. doi: 10.1159/000360623. Epub 2014 Jun 21.

引用本文的文献

2
Consequences of a Rare Complement Factor H Variant for Age-Related Macular Degeneration in the Amish.
Invest Ophthalmol Vis Sci. 2022 Aug 2;63(9):8. doi: 10.1167/iovs.63.9.8.
3
Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment.
PLoS Genet. 2015 Mar 17;11(3):e1004925. doi: 10.1371/journal.pgen.1004925. eCollection 2015 Mar.
4
Examination of candidate exonic variants for association to Alzheimer disease in the Amish.
PLoS One. 2015 Feb 10;10(2):e0118043. doi: 10.1371/journal.pone.0118043. eCollection 2015.

本文引用的文献

1
2
A genome-wide linkage screen in the Amish with Parkinson disease points to chromosome 6.
Ann Hum Genet. 2011 May;75(3):351-8. doi: 10.1111/j.1469-1809.2011.00643.x.
3
ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure.
Am J Hum Genet. 2010 Feb 12;86(2):172-84. doi: 10.1016/j.ajhg.2010.01.001. Epub 2010 Feb 4.
4
From the Cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):226-31. doi: 10.1073/pnas.0808358106. Epub 2008 Dec 29.
5
A genome-wide scan in an Amish pedigree with parkinsonism.
Ann Hum Genet. 2008 Sep;72(Pt 5):621-9. doi: 10.1111/j.1469-1809.2008.00452.x. Epub 2008 May 21.
6
An approach for cutting large and complex pedigrees for linkage analysis.
Eur J Hum Genet. 2008 Jul;16(7):854-60. doi: 10.1038/ejhg.2008.24. Epub 2008 Feb 27.
7
Case-control association testing with related individuals: a more powerful quasi-likelihood score test.
Am J Hum Genet. 2007 Aug;81(2):321-37. doi: 10.1086/519497. Epub 2007 Jul 10.
8
Accounting for relatedness in family based genetic association studies.
Hum Hered. 2007;64(4):234-42. doi: 10.1159/000103861. Epub 2007 Jun 14.
9
A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population.
Am J Hum Genet. 2007 Jul;81(1):17-31. doi: 10.1086/518720. Epub 2007 May 29.
10
Ignoring distant genealogic loops leads to false-positives in homozygosity mapping.
Ann Hum Genet. 2006 Nov;70(Pt 6):965-70. doi: 10.1111/j.1469-1809.2006.00279.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验