Neural Comput. 2013 Aug;25(8):2146-71. doi: 10.1162/NECO_a_00474. Epub 2013 May 10.
A major challenge in EEG-based brain-computer interfaces (BCIs) is the intersession nonstationarity in the EEG data that often leads to deteriorated BCI performances. To address this issue, this letter proposes a novel data space adaptation technique, EEG data space adaptation (EEG-DSA), to linearly transform the EEG data from the target space (evaluation session), such that the distribution difference to the source space (training session) is minimized. Using the Kullback-Leibler (KL) divergence criterion, we propose two versions of the EEG-DSA algorithm: the supervised version, when labeled data are available in the evaluation session, and the unsupervised version, when labeled data are not available. The performance of the proposed EEG-DSA algorithm is evaluated on the publicly available BCI Competition IV data set IIa and a data set recorded from 16 subjects performing motor imagery tasks on different days. The results show that the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the results without adaptation in terms of classification accuracy. The results also show that for subjects with poor BCI performances when no adaptation is applied, the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the unsupervised bias adaptation algorithm (PMean).
基于脑电图的脑机接口 (BCI) 的一个主要挑战是 EEG 数据中的会话间非平稳性,这通常会导致 BCI 性能下降。为了解决这个问题,本信提出了一种新的数据空间自适应技术,即脑电图数据空间自适应 (EEG-DSA),用于将目标空间(评估会话)中的 EEG 数据进行线性变换,以使与源空间(训练会话)的分布差异最小化。使用 KL 散度准则,我们提出了 EEG-DSA 算法的两个版本:当评估会话中有标记数据时,使用有监督版本,当评估会话中没有标记数据时,使用无监督版本。在公开可用的 BCI 竞赛 IV 数据集 IIa 和 16 名受试者在不同日期执行运动想象任务时记录的数据集上评估了所提出的 EEG-DSA 算法的性能。结果表明,所提出的 EEG-DSA 算法在有监督和无监督版本下在分类准确性方面均显著优于无自适应的结果。结果还表明,对于在无自适应应用时 BCI 性能较差的受试者,所提出的 EEG-DSA 算法在有监督和无监督版本下均显著优于无监督偏差自适应算法(PMean)。