Faculty of Health and Social Sciences, Leeds Metropolitan University, Leeds LS1 3HE, UK.
Free Radic Biol Med. 2013 Oct;63:126-34. doi: 10.1016/j.freeradbiomed.2013.05.012. Epub 2013 May 15.
Hypochlorous acid and its acid-base counterpart, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N-Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. In this study, the fast reaction techniques of pulse radiolysis and nanosecond laser flash photolysis have been used to generate both oxidizing and reducing radicals to react with the chloramides of hyaluronan (HACl) and heparin (HepCl). The strong reducing formate radicals and hydrated electrons were found to react rapidly with both HACl and HepCl with rate constants of 1-1.7 × 10(8) and 0.7-1.2 × 10(8)M(-1)s(-1) for formate radicals and 2.2 × 10(9) and 7.2 × 10(8)M(-1)s(-1) for hydrated electrons, respectively. The spectral characteristics of the products of these reactions were identical and were consistent with initial attack at the N-Cl groups, followed by elimination of chloride ions to produce nitrogen-centered radicals, which rearrange subsequently and rapidly to produce C-2 radicals on the glucosamine moiety, supporting an earlier EPR study by M.D. Rees et al. (J. Am. Chem. Soc.125: 13719-13733; 2003). The oxidizing hydroxyl radicals also reacted rapidly with HACl and HepCl with rate constants of 2.2 × 10(8) and 1.6 × 10(8)M(-1)s(-1), with no evidence from these data for any degree of selective attack on the N-Cl group relative to the N-H groups and other sites of attack. The carbonate anion radicals were much slower with HACl and HepCl than hydroxyl radicals (1.0 × 10(5) and 8.0 × 10(4)M(-1)s(-1), respectively) but significantly faster than with the parent molecules (3.5 × 10(4) and 5.0 × 10(4)M(-1)s(-1), respectively). These findings suggest that these potential in vivo radicals may react in a site-specific manner with the N-Cl group in the glycosaminoglycan chloramides of the ECM, possibly to produce more efficient fragmentation. This is the first study therefore to conclusively demonstrate that reducing radicals react rapidly with glycosaminoglycan chloramides in a site-specific attack at the N-Cl group, probably to produce a 100% efficient biopolymer fragmentation process. Although less reactive, carbonate radicals, which may be produced in vivo via reactions of peroxynitrite with serum levels of carbon dioxide, also appear to react in a highly site-specific manner at the N-Cl group. It is not yet known if such site-specific attacks by this important in vivo species lead to a more efficient fragmentation of the biopolymers than would be expected for attack by the stronger oxidizing species, the hydroxyl radical. It is clear, however, that the N-Cl group formed under inflammatory conditions in the extracellular matrix does present a more likely target for both reactive oxygen species and reducing species than the N-H groups in the parent glycosaminoglycans.
次氯酸及其酸式盐次氯酸盐离子在炎症条件下产生,可能会产生糖胺聚糖的氯酰胺,这些是细胞外基质 (ECM) 的重要组成部分。这可能通过髓过氧化物酶直接与糖胺聚糖结合而发生。氯酰胺中的 N-Cl 基团是还原和氧化自由基的潜在选择性靶标,可能导致这些生物聚合物相对于母体糖胺聚糖更有效地发生破坏性片段化。在这项研究中,使用脉冲辐射解和纳秒激光闪光光解的快速反应技术生成了氧化和还原自由基,以与透明质酸 (HACl) 和肝素 (HepCl) 的氯酰胺反应。发现强还原剂甲酸盐自由基和水合电子迅速与 HACl 和 HepCl 反应,甲酸盐自由基的速率常数为 1-1.7×10(8)和 0.7-1.2×10(8)M(-1)s(-1),水合电子的速率常数分别为 2.2×10(9)和 7.2×10(8)M(-1)s(-1)。这些反应产物的光谱特征相同,与 N-Cl 基团的初始攻击一致,随后消除氯离子产生氮中心自由基,随后迅速重排产生葡萄糖胺部分上的 C-2 自由基,支持 M.D. Rees 等人的早期 EPR 研究。(J. Am. Chem. Soc.125: 13719-13733; 2003)。氧化的羟基自由基也与 HACl 和 HepCl 迅速反应,速率常数分别为 2.2×10(8)和 1.6×10(8)M(-1)s(-1),这些数据没有证据表明相对于 N-H 基团和其他攻击部位,对 N-Cl 基团有任何程度的选择性攻击。碳酸根阴离子自由基与 HACl 和 HepCl 的反应速度比羟基自由基慢得多 (分别为 1.0×10(5)和 8.0×10(4)M(-1)s(-1)),但比母体分子快得多 (分别为 3.5×10(4)和 5.0×10(4)M(-1)s(-1))。这些发现表明,这些潜在的体内自由基可能以特定于部位的方式与 ECM 中糖胺聚糖氯酰胺的 N-Cl 基团反应,可能产生更有效的片段化。因此,这是第一项明确证明还原自由基以特定于部位的方式快速与糖胺聚糖氯酰胺反应,在 N-Cl 基团处进行攻击,可能产生 100%有效的生物聚合物片段化过程的研究。尽管反应性较低,但碳酸根自由基可能通过过氧亚硝酸盐与血清中二氧化碳的反应在体内产生,也似乎以高度特定于部位的方式在 N-Cl 基团处反应。目前尚不清楚这种重要的体内物种的这种特定于部位的攻击是否会导致生物聚合物的片段化比预期的更强氧化剂羟基自由基更有效。然而,很明显,在细胞外基质中炎症条件下形成的 N-Cl 基团比母体糖胺聚糖中的 N-H 基团更可能成为活性氧和还原物种的靶标。