Suppr超能文献

基于群体模板迭代相关的动态心脏 PET 成像的自动 TAC 提取。

Automatic TAC extraction from dynamic cardiac PET imaging using iterative correlation from a population template.

机构信息

CIBERSAM, Hospital General Universitario Gregorio Marañón, Madrid, Spain.

出版信息

Comput Methods Programs Biomed. 2013 Aug;111(2):308-14. doi: 10.1016/j.cmpb.2013.04.010. Epub 2013 May 18.

Abstract

This work describes a new iterative method for extracting time-activity curves (TAC) from dynamic imaging studies using a priori information from generic models obtained from TAC templates. Analytical expressions of the TAC templates were derived from TACs obtained by manual segmentation of three (13)NH3 pig studies (gold standard). An iterative method for extracting both ventricular and myocardial TACs using models of the curves obtained as an initial template was then implemented and tested. These TACs were extracted from masked and unmasked images; masking was applied to remove the lungs and surrounding non-relevant structures. The resulting TACs were then compared with TACs obtained manually; the results of kinetic analysis were also compared. Extraction of TACs for each region was sensitive to the presence of other organs (e.g., lungs) in the image. Masking the volume of interest noticeably reduces error. The proposed method yields good results in terms of TAC definition and kinetic parameter estimation, even when the initial TAC templates do not accurately match specific tracer kinetics.

摘要

这项工作描述了一种从动态成像研究中提取时间-活性曲线(TAC)的新迭代方法,该方法使用从 TAC 模板获得的通用模型的先验信息。TAC 模板的解析表达式是从手动分割的三个(13)NH3 猪研究(金标准)获得的 TAC 中得出的。然后实施并测试了一种使用初始模板获得的曲线模型提取心室和心肌 TAC 的迭代方法。这些 TAC 是从掩蔽和未掩蔽图像中提取的;掩蔽用于去除肺部和周围的非相关结构。然后将得到的 TAC 与手动获得的 TAC 进行比较;还比较了动力学分析的结果。对于每个区域的 TAC 提取都对图像中存在其他器官(例如肺部)敏感。掩蔽感兴趣的体积可以显著减少误差。即使初始 TAC 模板不能准确匹配特定示踪剂动力学,该方法在 TAC 定义和动力学参数估计方面也能取得良好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验