Suppr超能文献

科学能力问题作为语义丰富的开放药理学空间开发的基础。

Scientific competency questions as the basis for semantically enriched open pharmacological space development.

机构信息

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland.

出版信息

Drug Discov Today. 2013 Sep;18(17-18):843-52. doi: 10.1016/j.drudis.2013.05.008. Epub 2013 May 20.

Abstract

Molecular information systems play an important part in modern data-driven drug discovery. They do not only support decision making but also enable new discoveries via association and inference. In this review, we outline the scientific requirements identified by the Innovative Medicines Initiative (IMI) Open PHACTS consortium for the design of an open pharmacological space (OPS) information system. The focus of this work is the integration of compound-target-pathway-disease/phenotype data for public and industrial drug discovery research. Typical scientific competency questions provided by the consortium members will be analyzed based on the underlying data concepts and associations needed to answer the questions. Publicly available data sources used to target these questions as well as the need for and potential of semantic web-based technology will be presented.

摘要

分子信息系统在现代数据驱动的药物发现中起着重要的作用。它们不仅支持决策,还通过关联和推理实现新的发现。在这篇综述中,我们概述了创新药物倡议(IMI)开放式 PHACTS 联盟为设计开放式药理空间(OPS)信息系统而确定的科学要求。这项工作的重点是整合化合物-靶标-途径-疾病/表型数据,用于公共和工业药物发现研究。将根据回答这些问题所需的基础数据概念和关联来分析联盟成员提供的典型科学能力问题。还将介绍用于针对这些问题的公开可用数据源,以及基于语义网技术的需求和潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验