Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
ISME J. 2013 Oct;7(10):1962-73. doi: 10.1038/ismej.2013.85. Epub 2013 May 23.
The deep ocean is an important component of global biogeochemical cycles because it contains one of the largest pools of reactive carbon and nitrogen on earth. However, the microbial communities that drive deep-sea geochemistry are vastly unexplored. Metatranscriptomics offers new windows into these communities, but it has been hampered by reliance on genome databases for interpretation. We reconstructed the transcriptomes of microbial populations from Guaymas Basin, in the deep Gulf of California, through shotgun sequencing and de novo assembly of total community RNA. Many of the resulting messenger RNA (mRNA) contiguous sequences contain multiple genes, reflecting co-transcription of operons, including those from dominant members. Also prevalent were transcripts with only limited representation (2.8 times coverage) in a corresponding metagenome, including a considerable portion (1.2 Mb total assembled mRNA sequence) with similarity (96%) to a marine heterotroph, Alteromonas macleodii. This Alteromonas and euryarchaeal marine group II populations displayed abundant transcripts from amino-acid transporters, suggesting recycling of organic carbon and nitrogen from amino acids. Also among the most abundant mRNAs were catalytic subunits of the nitrite oxidoreductase complex and electron transfer components involved in nitrite oxidation. These and other novel genes are related to novel Nitrospirae and have limited representation in accompanying metagenomic data. High throughput sequencing of 16S ribosomal RNA (rRNA) genes and rRNA read counts confirmed that Nitrospirae are minor yet widespread members of deep-sea communities. These results implicate a novel bacterial group in deep-sea nitrite oxidation, the second step of nitrification. This study highlights metatranscriptomic assembly as a valuable approach to study microbial communities.
深海是全球生物地球化学循环的重要组成部分,因为它拥有地球上最大的活性碳和氮库之一。然而,驱动深海地球化学的微生物群落还在很大程度上未被探索。宏转录组学为研究这些群落提供了新的窗口,但它受到依赖基因组数据库进行解释的限制。我们通过对加利福尼亚湾深海瓜伊马斯盆地微生物种群的总群落 RNA 进行鸟枪法测序和从头组装,重建了微生物种群的转录组。许多由此产生的信使 RNA(mRNA)连续序列包含多个基因,反映了操纵子的共转录,包括优势成员的操纵子。也普遍存在在相应的宏基因组中仅有有限代表性(覆盖率为 2.8 倍)的转录本,包括与海洋异养菌交替单胞菌(Alteromonas macleodii)具有相似性(96%)的相当大一部分(总组装 mRNA 序列 1.2 Mb)。这种交替单胞菌和海洋广古菌门 II 类群表现出丰富的氨基酸转运蛋白转录本,表明从氨基酸中循环利用有机碳和氮。在最丰富的 mRNA 中,还有亚硝酸盐氧化还原酶复合物的催化亚基和参与亚硝酸盐氧化的电子转移成分。这些和其他新基因与新型硝化螺旋菌有关,在伴随的宏基因组数据中代表性有限。16S 核糖体 RNA(rRNA)基因和 rRNA 读数的高通量测序证实,硝化螺旋菌是深海群落中数量较少但分布广泛的成员。这些结果表明,一个新的细菌群参与了深海亚硝酸盐氧化,这是硝化作用的第二步。这项研究强调了宏转录组组装作为研究微生物群落的一种有价值的方法。