Suppr超能文献

一种具有马尔可夫跳跃参数和混合时滞的递归神经网络状态估计的模态相关方法。

A mode-dependent approach to state estimation of recurrent neural networks with Markovian jumping parameters and mixed delays.

机构信息

School of Electronics and Information Engineering, Soochow University, Suzhou 215006, PR China.

出版信息

Neural Netw. 2013 Oct;46:50-61. doi: 10.1016/j.neunet.2013.04.014. Epub 2013 May 6.

Abstract

This paper is concerned with the problem of state estimation of recurrent neural networks with Markovian jumping parameters and mixed delays. A mode-dependent approach is proposed by constructing a novel Lyapunov functional, where some terms involving triple or quadruple integrals are taken into account. The advantage is that as many as possible of the Lyapunov matrices are chosen to be mode-dependent. Several design criteria are established under which the estimation error system is globally exponentially stable in the mean square sense. The gain matrices of the state estimator can be then found by solving a set of coupled linear matrix inequalities. It is shown in theory that better performance can be achieved by this approach. Furthermore, by introducing some scaling parameters, this approach is effectively employed to deal with the state estimation problem of the neural networks with complex dynamic behaviors, to which some existing results are not applicable.

摘要

本文研究了具有马尔可夫跳变参数和混合时滞的递归神经网络的状态估计问题。通过构造一个新的李雅普诺夫泛函,提出了一种与模态相关的方法,其中考虑了一些涉及三或四倍积分的项。这样做的优点是尽可能多地选择李雅普诺夫矩阵与模态相关。在一些设计准则下,建立了估计误差系统在均方意义下全局指数稳定的条件。然后可以通过求解一组耦合的线性矩阵不等式来找到状态估计器的增益矩阵。理论上表明,这种方法可以获得更好的性能。此外,通过引入一些比例参数,该方法有效地应用于具有复杂动态行为的神经网络的状态估计问题,而这是一些现有结果所不适用的。

相似文献

1
2
Exponential state estimation for Markovian jumping neural networks with time-varying discrete and distributed delays.
Neural Netw. 2012 Nov;35:103-11. doi: 10.1016/j.neunet.2012.08.005. Epub 2012 Aug 31.
3
State estimation for jumping recurrent neural networks with discrete and distributed delays.
Neural Netw. 2009 Jan;22(1):41-8. doi: 10.1016/j.neunet.2008.09.015. Epub 2008 Oct 28.
4
Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays.
IEEE Trans Neural Netw. 2009 Jul;20(7):1102-16. doi: 10.1109/TNN.2009.2016210. Epub 2009 May 26.
5
On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching.
IEEE Trans Neural Netw Learn Syst. 2013 May;24(5):800-11. doi: 10.1109/TNNLS.2013.2244613.
6
Global exponential estimates of delayed stochastic neural networks with Markovian switching.
Neural Netw. 2012 Dec;36:136-45. doi: 10.1016/j.neunet.2012.10.002. Epub 2012 Oct 13.
7
Protocol-based state estimation for delayed Markovian jumping neural networks.
Neural Netw. 2018 Dec;108:355-364. doi: 10.1016/j.neunet.2018.08.017. Epub 2018 Sep 10.
9
Exponential stability of stochastic neural networks with both markovian jump parameters and mixed time delays.
IEEE Trans Syst Man Cybern B Cybern. 2011 Apr;41(2):341-53. doi: 10.1109/TSMCB.2010.2053354. Epub 2010 Jul 23.

引用本文的文献

1
Composite learning sliding mode synchronization of chaotic fractional-order neural networks.
J Adv Res. 2020 Apr 26;25:87-96. doi: 10.1016/j.jare.2020.04.006. eCollection 2020 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验