Suppr超能文献

单输入单输出 Hammerstein 系统的子空间辨识:在拉伸反射辨识中的应用。

Subspace identification of SISO Hammerstein systems: application to stretch reflex identification.

出版信息

IEEE Trans Biomed Eng. 2013 Oct;60(10):2725-34. doi: 10.1109/TBME.2013.2264216. Epub 2013 May 20.

Abstract

This paper describes a new subspace-based algorithm for the identification of Hammerstein systems. It extends a previous approach which described the Hammerstein cascade by a state-space model and identified it with subspace methods that are fast and require little a priori knowledge. The resulting state-space models predict the system response well but have many redundant parameters and provide limited insight into the system since they depend on both the nonlinear and linear elements. This paper addresses these issues by reformulating the problem so that there are many fewer parameters and each parameter is related directly to either the linear dynamics or the static nonlinearity. Consequently, it is straightforward to construct the continuous-time Hammerstein models corresponding to the estimated state-space model. Simulation studies demonstrated that the new method performs better than other well-known methods in the nonideal conditions that prevail during practical experiments. Moreover, it accurately distinguished changes in the linear component from those in the static nonlinearity. The practical application of the new algorithm was demonstrated by applying it to experimental data from a study of the stretch reflex at the human ankle. Hammerstein models were estimated between the velocity of ankle perturbations and the EMG activity of triceps surae for voluntary contractions in the plantarflexing and dorsiflexion directions. The resulting models described the behavior well, displayed the expected unidirectional rate sensitivity, and revealed that both the gain of the linear element and the threshold of the nonlinear changed with contraction direction.

摘要

本文介绍了一种基于子空间的新算法,用于识别 Hammerstein 系统。它扩展了之前的方法,该方法通过状态空间模型描述 Hammerstein 级联,并使用快速且需要很少先验知识的子空间方法对其进行识别。所得到的状态空间模型可以很好地预测系统响应,但具有许多冗余参数,并且由于它们同时依赖于非线性和线性元件,因此对系统的了解有限。本文通过重新制定问题来解决这些问题,使得参数数量大大减少,并且每个参数都直接与线性动态或静态非线性相关。因此,很容易构建与估计的状态空间模型相对应的连续时间 Hammerstein 模型。仿真研究表明,在实际实验中常见的不理想条件下,新方法的性能优于其他知名方法。此外,它能够准确地区分线性组件和静态非线性组件的变化。该新算法的实际应用通过将其应用于人类脚踝伸展反射研究中的实验数据得到了证明。针对足底屈肌和背屈肌方向的自愿收缩,在脚踝运动速度和比目鱼肌肌电图活动之间估计了 Hammerstein 模型。所得到的模型很好地描述了行为,显示了预期的单向速率敏感性,并且表明线性元件的增益和非线性的阈值都随收缩方向而变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验