Suppr超能文献

临床级 NK 细胞产品的纯化和扩增,以优化生产方案。

Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol.

机构信息

Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation, Hannover Medical School Hannover, Germany.

出版信息

Front Oncol. 2013 May 17;3:118. doi: 10.3389/fonc.2013.00118. eCollection 2013.

Abstract

Allogeneic natural killer (NK) cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity, and T-cell depletion during good manufacturing practice (GMP)-grade NK cell selection. Forty NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T-cell depletion, either the depletion 2.1 program in single or double procedure (D2.11depl, n = 18; D2.12depl, n = 13) or the faster depletion 3.1 (D3.1, n = 9) was used on the CliniMACS instrument. Seventeen purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59 × 10(8) CD56(+)CD3(-) cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.11depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p < 0.01) and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.11depl/2depl with regard to recovery of CD56(+)CD3(-) NK cells (68% vs. 41%/38%). Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T-cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.

摘要

异体自然杀伤 (NK) 细胞用于干细胞移植后过继免疫治疗。为了克服 NK 细胞纯化和激活中的技术限制,本研究调查了不同变量对 NK 细胞回收、细胞毒性和 T 细胞耗竭的影响,这些变量均在良好生产规范 (GMP) 级 NK 细胞选择过程中。从 54 个未刺激的白细胞分离物中获得了 40 个 NK 细胞产品,使用免疫磁珠 CD3 T 细胞耗竭,然后进行 CD56 细胞富集步骤。对于 T 细胞耗竭,在 CliniMACS 仪器上使用了单程序或双程序的耗竭 2.1 程序(D2.11depl,n=18;D2.12depl,n=13)或更快的耗竭 3.1 程序(D3.1,n=9)。17 个纯化的 NK 细胞产品在体外通过 IL-2 激活 12 天。整个过程产生了中位数为 7.59×10(8)个 CD56(+)CD3(-)细胞,纯度和活力分别为 94%。与 D3.1 相比,D2.11depl/2depl 的 T 细胞耗竭明显更好(log4.6/log4.9 与 log3.7;p<0.01),且两阶段的双程序总是导致残留 T 细胞低于 0.1%。相反,D3.1 在 CD56(+)CD3(-)NK 细胞的回收方面优于 D2.11depl/2depl(68%比 41%/38%)。同时,单核细胞,尤其是 IL-2 激活,与未刺激的 NK 细胞相比,导致对恶性靶细胞的 NK 细胞活性增加,这与自然细胞毒性受体和细胞内信号的上调相关。总的来说,发现 NK 细胞扩增率和 NK 细胞亚群分布存在广泛差异。总之,我们的结果表明,通过 T 细胞耗竭程序 D2.1 和 D3.1 的顺序处理,可能会提高 GMP 级 NK 细胞的纯化。此外,还需要进一步优化 NK 细胞扩增方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cddf/3656406/098793f1b6f2/fonc-03-00118-g001.jpg

相似文献

1
Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol.
Front Oncol. 2013 May 17;3:118. doi: 10.3389/fonc.2013.00118. eCollection 2013.
8
Cytokines impact natural killer cell phenotype and functionality against glioblastoma .
Front Immunol. 2023 Sep 28;14:1227064. doi: 10.3389/fimmu.2023.1227064. eCollection 2023.
9
How do we manufacture clinical-grade interleukin-15-stimulated natural killer cell products for cancer treatment?
Transfusion. 2018 Jun;58(6):1340-1347. doi: 10.1111/trf.14573. Epub 2018 Mar 14.

引用本文的文献

2
Feeder-cell-free system for production of natural killer cells from cord blood hematopoietic stem and progenitor cells.
Front Immunol. 2025 Feb 20;16:1531736. doi: 10.3389/fimmu.2025.1531736. eCollection 2025.
3
Single-chain variable fragment affinity tuning can optimize anti-AML CAR-NK cell functionality.
J Immunother Cancer. 2025 Feb 6;13(2):e010763. doi: 10.1136/jitc-2024-010763.
5
Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives.
Cancer Metastasis Rev. 2024 Dec;43(4):1401-1417. doi: 10.1007/s10555-024-10212-8. Epub 2024 Sep 18.
6
Promising approach for targeting ROBO1 with CAR NK cells to combat ovarian cancer primary tumor cells and organoids.
Future Sci OA. 2024 Jul 11;10(1):2340186. doi: 10.2144/fsoa-2023-0135. Epub 2024 Jul 29.
7
The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity.
Cancers (Basel). 2024 Jul 22;16(14):2608. doi: 10.3390/cancers16142608.
9
Optimisation of a primary human CAR-NK cell manufacturing pipeline.
Clin Transl Immunology. 2024 May 2;13(5):e1507. doi: 10.1002/cti2.1507. eCollection 2024.

本文引用的文献

1
Age-matched dendritic cell subpopulations reference values in childhood.
Scand J Immunol. 2013 Mar;77(3):213-20. doi: 10.1111/sji.12024.
2
Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers.
Bone Marrow Transplant. 2013 Mar;48(3):433-8. doi: 10.1038/bmt.2012.162. Epub 2012 Sep 3.
3
Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications.
Cytotherapy. 2012 Oct;14(9):1131-43. doi: 10.3109/14653249.2012.700767. Epub 2012 Aug 17.
4
Natural killer cells: a review of manufacturing and clinical utility.
Transfusion. 2013 Feb;53(2):404-10. doi: 10.1111/j.1537-2995.2012.03724.x. Epub 2012 Jun 7.
5
Clinical production and therapeutic applications of alloreactive natural killer cells.
Methods Mol Biol. 2012;882:491-507. doi: 10.1007/978-1-61779-842-9_28.
6
Targeting natural killer cells and natural killer T cells in cancer.
Nat Rev Immunol. 2012 Mar 22;12(4):239-52. doi: 10.1038/nri3174.
9
Natural killer cell engineering for cellular therapy of cancer.
Tissue Antigens. 2011 Dec;78(6):409-15. doi: 10.1111/j.1399-0039.2011.01796.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验