Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark.
Acta Ophthalmol. 2013 Jun;91 Thesis 4:1-34. doi: 10.1111/aos.12157.
Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined differentiation pathway in human corneal epithelium according to an optimized protocol for maintenance of expression profiles. Isolated total RNA from basal limbal crypts (BLCs), superficial limbal crypts (SLCs), paracentral/central cornea and limbal stroma was amplified and converted to fragmented cDNA libraries for use in deep paired-end next-generation sequencing. Global transcriptional profiling was carried out using bioinformatics. The location of primitive cells in BLCs, migratory and activated cells in SLCs and differentiated cells in paracentral/central cornea was evident from mapping of significantly upregulated genes in each compartment to the gene ontology (GO). Interestingly, many GO terms in BLCs were also involved in neurogenic processes, whereas many GO terms in SLCs were related to vasculature. Mapping upregulated genes in BLCs to pathway annotations in Kyoto Encyclopedia of Genes and Genomes described many active pathways as signalling and cancer-associated pathways. We supply extensive information on possible novel biomarkers, reveal insight into both active pathways and novel regulators of LESCs such as Lrig1 and SOX9 and provide an immense amount of data for future exploration (Bath et al. 2013b). Selective ex vivo expansion of LESCs in hypoxia and the comprehensive molecular characterization of corneal epithelial subpopulations in situ are expected to be beneficial for the future treatment of LSCD by cultured limbal epithelial transplantation.
角膜上皮通过位于角膜缘组织学定义的干细胞巢内的角膜缘上皮干细胞(LESCs)不断再生。LESCs 功能缺陷或功能障碍导致 LIMB 干细胞缺乏(LSCD),导致疼痛和视力下降。自 1997 年首次成功通过体外扩增的 LESCs 移植治疗 LSCD 以来,人们已经进行了许多尝试来优化培养条件,以提高手术效果。迄今为止,该领域的生物工程进展受到缺乏 LESCs 特异性生物标志物和原位上皮亚群缺乏精确分子特征这两个因素的严重阻碍。本论文的目的是优化培养系统中的环境氧浓度,以选择性地体外扩增 LESCs,并使用激光捕获显微切割和 RNA 测序组合分析人角膜上皮中的原位亚群,进行全局转录组分析。我们比较了使用富含血清的培养基在 γ 辐照的 NIH/3T3 饲养细胞上进行扩增或在无血清 EpiLife 培养基中直接扩增的分离培养物,使用了一系列生理相关的氧浓度(2%、5%、10%、15%和 20%)。使用免疫细胞化学和高级荧光显微镜,对细胞的生长、细胞周期分布、集落形成效率(CFE)、表型和细胞形态进行了特征描述。在 2%O2 中扩增的角膜缘上皮细胞生长缓慢,S/G2 期细胞比例低,CFE 高,干细胞标志物 ABCG2 和 p63α 表达高,分化标志物 CK3 比例低,类似于 LESC 表型。低氧维持培养物中 LESCs 的作用不依赖于用于增殖的系统(Bath 等人,2013a)。激光捕获微切割用于根据优化的维持表达谱方案,从人角膜上皮的空间定义的分化途径中分离原位细胞亚群。从基底角膜缘隐窝(BLCs)、浅层角膜缘隐窝(SLCs)、旁中央/中央角膜和角膜缘基质中分离出的总 RNA 进行扩增,并转化为碎片化的 cDNA 文库,用于深度配对末端下一代测序。使用生物信息学进行了全局转录组分析。通过将每个隔室中显著上调基因映射到基因本体论(GO),可以明显看出原始细胞在 BLCs 中的位置、迁移和激活细胞在 SLCs 中的位置以及旁中央/中央角膜中的分化细胞的位置。有趣的是,BLCs 中的许多 GO 术语也与神经发生过程有关,而 SLCs 中的许多 GO 术语与血管生成有关。将 BLCs 中上调的基因映射到京都基因与基因组百科全书(KEGG)中的通路注释中,描述了许多作为信号和癌症相关通路的活跃通路。我们提供了大量关于可能的新型生物标志物的信息,深入了解 LESCs 的活跃通路和新型调节因子,如 Lrig1 和 SOX9,并为未来的研究提供了大量数据(Bath 等人,2013b)。在低氧条件下选择性地体外扩增 LESCs 和全面分析原位角膜上皮亚群,有望为未来通过培养的角膜缘上皮移植治疗 LSCD 提供帮助。
Invest Ophthalmol Vis Sci. 2009-8-26
Mol Cell Biochem. 2023-4
Acta Ophthalmol. 2018-9-21