Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
Aging Cell. 2013 Oct;12(5):802-13. doi: 10.1111/acel.12111. Epub 2013 Jun 28.
The ubiquitin-proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi-mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose-dependent pharmacological proteasome inhibition. Impaired proteasome function promoted several 'old-age' phenotypes and markedly reduced flies' lifespan. In young somatic tissues and in gonads of all ages, loss of proteasome activity induced higher expression levels and assembly rates of proteasome subunits. Proteasome dysfunction was signaled to the proteostasis network by reactive oxygen species that originated from malfunctioning mitochondria and triggered an Nrf2-dependent upregulation of the proteasome subunits. RNAi-mediated Nrf2 knockdown reduced proteasome activities, flies' resistance to stress, as well as longevity. Conversely, inducible activation of Nrf2 in transgenic flies upregulated basal proteasome expression and activity independently of age and conferred resistance to proteotoxic stress. Interestingly, prolonged Nrf2 overexpression reduced longevity, indicating that excessive activation of the proteostasis pathways can be detrimental. Our in vivo studies add new knowledge on the proteotoxic stress-related regulation of the proteostasis networks in higher metazoans. Proteasome dysfunction triggers the activation of an Nrf2-dependent tissue- and age-specific regulatory circuit aiming to adjust the cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis circuit accelerates aging.
泛素-蛋白酶体系统是细胞内蛋白质稳态调节的核心。然而,体内蛋白酶体功能障碍对蛋白质稳态网络和衰老过程的影响仍知之甚少。我们发现,RNAi 介导的黑腹果蝇 20S 蛋白酶体亚基的敲低导致幼虫致死。因此,我们通过开发一种剂量依赖性的药理学蛋白酶体抑制模型,研究了蛋白酶体功能障碍在成年果蝇中的分子效应。蛋白酶体功能受损促进了几种“老年”表型,并显著缩短了果蝇的寿命。在年轻的体细胞组织和所有年龄段的性腺中,丧失蛋白酶体活性会诱导更高的蛋白酶体亚基表达水平和组装速率。蛋白酶体功能障碍通过源自功能失调的线粒体的活性氧信号传递到蛋白质稳态网络,并触发 Nrf2 依赖性的蛋白酶体亚基上调。RNAi 介导的 Nrf2 敲低降低了蛋白酶体活性、果蝇对压力的抵抗力以及寿命。相反,在转基因果蝇中诱导激活 Nrf2 可独立于年龄上调基础蛋白酶体表达和活性,并赋予对蛋白毒性应激的抗性。有趣的是,延长 Nrf2 的过表达会降低寿命,表明过度激活蛋白质稳态途径可能是有害的。我们的体内研究为高等后生动物中与蛋白质毒性应激相关的蛋白质稳态网络的调节增加了新知识。蛋白酶体功能障碍触发 Nrf2 依赖性的组织和年龄特异性调节回路的激活,旨在根据时间和/或空间的蛋白水解需求调整细胞内蛋白酶体活性。这种蛋白质稳态回路的长期失调会加速衰老。