Suppr超能文献

穿孔素-2 限制沙眼衣原体在巨噬细胞中的生长。

Perforin-2 restricts growth of Chlamydia trachomatis in macrophages.

机构信息

Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA.

出版信息

Infect Immun. 2013 Aug;81(8):3045-54. doi: 10.1128/IAI.00497-13. Epub 2013 Jun 10.

Abstract

Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium that preferentially infects epithelial cells. Professional phagocytes provide C. trachomatis only a limited ability to survive and are proficient killers of chlamydiae. We present evidence herein that identifies a novel host defense protein, perforin-2, that plays a significant role in the eradication of C. trachomatis during the infection of macrophages. Knockdown of perforin-2 in macrophages did not alter the invasion of host cells but did result in chlamydial growth that closely mirrored that detected in HeLa cells. C trachomatis L2, serovar B, and serovar D and C. muridarum were all equally susceptible to perforin-2-mediated killing. Interestingly, induction of perforin-2 expression in epithelial cells is blocked during productive chlamydial growth, thereby protecting chlamydiae from bactericidal attack. Ectopic expression of perforin-2 in HeLa cells, however, does result in killing. Overall, our data implicate a new innate resistance protein in the control of chlamydial infection and may help explain why the macrophage environment is hostile to chlamydial growth.

摘要

沙眼衣原体是一种革兰氏阴性专性细胞内细菌,优先感染上皮细胞。专业的吞噬细胞只能为沙眼衣原体提供有限的生存能力,并且是杀衣原体的高手。我们在此提出证据,确定了一种新型宿主防御蛋白——穿孔素-2,它在巨噬细胞感染期间对消除沙眼衣原体起着重要作用。在巨噬细胞中敲低穿孔素-2不会改变宿主细胞的入侵,但会导致类似于在 HeLa 细胞中检测到的衣原体生长。沙眼衣原体 L2、B 血清型和 D 血清型以及鼠衣原体都同样容易受到穿孔素-2介导的杀伤。有趣的是,在产毒沙眼衣原体生长过程中,上皮细胞中穿孔素-2的表达被抑制,从而保护衣原体免受杀菌攻击。然而,在 HeLa 细胞中异位表达穿孔素-2确实会导致杀伤。总的来说,我们的数据表明一种新的先天抵抗蛋白在控制衣原体感染方面发挥作用,这可能有助于解释为什么巨噬细胞环境对衣原体生长不利。

相似文献

1
Perforin-2 restricts growth of Chlamydia trachomatis in macrophages.
Infect Immun. 2013 Aug;81(8):3045-54. doi: 10.1128/IAI.00497-13. Epub 2013 Jun 10.
3
Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.
Infect Immun. 2011 Oct;79(10):4019-28. doi: 10.1128/IAI.05308-11. Epub 2011 Aug 1.
4
Activation of neutrophils by Chlamydia trachomatis-infected epithelial cells is modulated by the chlamydial plasmid.
Microbes Infect. 2018 May;20(5):284-292. doi: 10.1016/j.micinf.2018.02.007. Epub 2018 Mar 2.
6
Indoleamine 2,3-Dioxygenase Cannot Inhibit Growth in HL-60 Human Neutrophil Granulocytes.
Front Immunol. 2021 Nov 8;12:717311. doi: 10.3389/fimmu.2021.717311. eCollection 2021.
7
Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10.
J Immunol. 2008 May 1;180(9):6237-45. doi: 10.4049/jimmunol.180.9.6237.
8
Serovars Drive Differential Production of Proinflammatory Cytokines and Chemokines Depending on the Type of Cell Infected.
Front Cell Infect Microbiol. 2019 Nov 26;9:399. doi: 10.3389/fcimb.2019.00399. eCollection 2019.
9
Fc receptor regulation of protective immunity against Chlamydia trachomatis.
Immunology. 2002 Feb;105(2):213-21. doi: 10.1046/j.0019-2805.2001.01354.x.
10
Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection.
J Immunol. 2005 Jun 1;174(11):7186-93. doi: 10.4049/jimmunol.174.11.7186.

引用本文的文献

1
Perforin-2 is overexpressed in Kikuchi-Fujimoto disease.
Virchows Arch. 2025 Feb 7. doi: 10.1007/s00428-025-04046-0.
2
The evolutionary diversification and antimicrobial potential of MPEG1 in Metazoa.
Comput Struct Biotechnol J. 2023 Nov 19;21:5818-5828. doi: 10.1016/j.csbj.2023.11.032. eCollection 2023.
4
Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism.
Nat Commun. 2022 Aug 26;13(1):5039. doi: 10.1038/s41467-022-32757-4.
5
Breaching the Bacterial Envelope: The Pivotal Role of Perforin-2 (MPEG1) Within Phagocytes.
Front Immunol. 2021 Feb 22;12:597951. doi: 10.3389/fimmu.2021.597951. eCollection 2021.
6
Immunopathogenesis of genital Chlamydia infection: insights from mouse models.
Pathog Dis. 2021 Mar 31;79(4). doi: 10.1093/femspd/ftab012.
7
To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins.
Front Immunol. 2020 Nov 13;11:601405. doi: 10.3389/fimmu.2020.601405. eCollection 2020.
8
Analysis of complement deposition and processing on Chlamydia trachomatis.
Med Microbiol Immunol. 2021 Feb;210(1):13-32. doi: 10.1007/s00430-020-00695-x. Epub 2020 Nov 18.
9
Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector.
Front Immunol. 2020 Oct 15;11:581906. doi: 10.3389/fimmu.2020.581906. eCollection 2020.
10
An Ancient Molecular Arms Race: vs. Membrane Attack Complex/Perforin (MACPF) Domain Proteins.
Front Immunol. 2020 Jul 14;11:1490. doi: 10.3389/fimmu.2020.01490. eCollection 2020.

本文引用的文献

3
CPAF: a Chlamydial protease in search of an authentic substrate.
PLoS Pathog. 2012;8(8):e1002842. doi: 10.1371/journal.ppat.1002842. Epub 2012 Aug 2.
4
Chlamydia trachomatis vacuole maturation in infected macrophages.
J Leukoc Biol. 2012 Oct;92(4):815-27. doi: 10.1189/jlb.0711336. Epub 2012 Jul 17.
6
Lipid acquisition by intracellular Chlamydiae.
Cell Microbiol. 2012 Jul;14(7):1010-8. doi: 10.1111/j.1462-5822.2012.01794.x. Epub 2012 Apr 17.
7
Evolution of Chlamydia trachomatis.
Ann N Y Acad Sci. 2011 Aug;1230:E11-8. doi: 10.1111/j.1749-6632.2011.06194.x.
8
Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.
Infect Immun. 2011 Oct;79(10):4019-28. doi: 10.1128/IAI.05308-11. Epub 2011 Aug 1.
10
The structural basis for membrane binding and pore formation by lymphocyte perforin.
Nature. 2010 Nov 18;468(7322):447-51. doi: 10.1038/nature09518. Epub 2010 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验