IEEE Trans Cybern. 2014 Jan;44(1):40-53. doi: 10.1109/TCYB.2013.2245892. Epub 2013 Feb 26.
This paper investigates how to use prediction strategies to improve the performance of multiobjective evolutionary optimization algorithms in dealing with dynamic environments. Prediction-based methods have been applied to predict some isolated points in both dynamic single objective optimization and dynamic multiobjective optimization. We extend this idea to predict a whole population by considering the properties of continuous dynamic multiobjective optimization problems. In our approach, called population prediction strategy (PPS), a Pareto set is divided into two parts: a center point and a manifold. A sequence of center points is maintained to predict the next center, and the previous manifolds are used to estimate the next manifold. Thus, PPS could initialize a whole population by combining the predicted center and estimated manifold when a change is detected. We systematically compare PPS with a random initialization strategy and a hybrid initialization strategy on a variety of test instances with linear or nonlinear correlation between design variables. The statistical results show that PPS is promising for dealing with dynamic environments.
本文研究了如何利用预测策略来提高多目标进化优化算法在处理动态环境时的性能。基于预测的方法已被应用于预测动态单目标优化和动态多目标优化中的一些孤立点。我们通过考虑连续动态多目标优化问题的性质,将这个想法扩展到了预测整个种群。在我们的方法中,称为种群预测策略(PPS),将 Pareto 集分为两部分:中心点和流形。维护一系列中心点以预测下一个中心点,并且使用前一个流形来估计下一个流形。因此,当检测到变化时,PPS 可以通过结合预测的中心点和估计的流形来初始化整个种群。我们在具有设计变量之间具有线性或非线性相关性的各种测试实例上系统地比较了 PPS 与随机初始化策略和混合初始化策略。统计结果表明,PPS 有望用于处理动态环境。