Suppr超能文献

沃尔巴克氏体、卡多体和立克次氏体细菌共生体之间插入序列的侧向转移。

Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts.

机构信息

Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2 (UMR 5554), Montpellier, France.

出版信息

Heredity (Edinb). 2013 Oct;111(4):330-7. doi: 10.1038/hdy.2013.56. Epub 2013 Jun 12.

Abstract

Various bacteria live exclusively within arthropod cells and collectively act as an important driver of arthropod evolutionary ecology. Whereas rampant intra-generic DNA transfers were recently shown to have a pivotal role in the evolution of the most common of these endosymbionts, Wolbachia, the present study show that inter-generic DNA transfers also commonly take place, constituting a potent source of rapid genomic change. Bioinformatic, molecular and phylogenetic data provide evidence that a selfish genetic element, the insertion sequence ISRpe1, is widespread in the Wolbachia, Cardinium and Rickettsia endosymbionts and experiences recent (and likely ongoing) transfers over long evolutionary distances. Although many ISRpe1 copies were clearly expanding and leading to rapid endosymbiont diversification, degraded copies are also frequently found, constituting an unusual genomic fossil record suggestive of ancient ISRpe1 expansions. Overall, the present data highlight how ecological connections within the arthropod intracellular environment facilitate lateral DNA transfers between distantly related bacterial lineages.

摘要

各种细菌专门生活在节肢动物细胞内,它们共同成为节肢动物进化生态学的一个重要驱动因素。尽管最近的研究表明,在最常见的这些内共生体——沃尔巴克氏体的进化过程中,种内 DNA 转移起着关键作用,但本研究表明,种间 DNA 转移也很常见,是快速基因组变化的一个有力来源。生物信息学、分子和系统发育数据提供了证据,表明一个自私的遗传元件,插入序列 ISRpe1,广泛存在于沃尔巴克氏体、卡多氏体和立克次氏体内共生体中,并经历了近期(可能还在持续)的长距离进化转移。尽管许多 ISRpe1 拷贝显然在扩张,并导致内共生体的快速多样化,但也经常发现退化的拷贝,构成了一个不寻常的基因组化石记录,暗示了古老的 ISRpe1 扩张。总的来说,这些数据强调了节肢动物细胞内环境中的生态联系如何促进不同细菌谱系之间的横向 DNA 转移。

相似文献

1
Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts.
Heredity (Edinb). 2013 Oct;111(4):330-7. doi: 10.1038/hdy.2013.56. Epub 2013 Jun 12.
2
Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts.
Mol Biol Evol. 2011 Jan;28(1):685-97. doi: 10.1093/molbev/msq238. Epub 2010 Sep 6.
3
4
Intense transpositional activity of insertion sequences in an ancient obligate endosymbiont.
Mol Biol Evol. 2008 Sep;25(9):1889-96. doi: 10.1093/molbev/msn134. Epub 2008 Jun 17.
5
8
The incidence of bacterial endosymbionts in terrestrial arthropods.
Proc Biol Sci. 2015 May 22;282(1807):20150249. doi: 10.1098/rspb.2015.0249.
10
Diversity and function of arthropod endosymbiont toxins.
Trends Microbiol. 2022 Feb;30(2):185-198. doi: 10.1016/j.tim.2021.06.008. Epub 2021 Jul 9.

引用本文的文献

1
induces strong cytoplasmic incompatibility in a predatory insect.
Proc Biol Sci. 2024 Jul;291(2027):20240680. doi: 10.1098/rspb.2024.0680. Epub 2024 Jul 31.
3
4
Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma.
Environ Microbiol. 2022 Oct;24(10):4771-4786. doi: 10.1111/1462-2920.16138. Epub 2022 Aug 4.
5
Genomic evolution and adaptation of arthropod-associated Rickettsia.
Sci Rep. 2022 Mar 9;12(1):3807. doi: 10.1038/s41598-022-07725-z.
8
Comparative Genomics of - Dual Endosymbiosis in a Plant-Parasitic Nematode.
Front Microbiol. 2018 Oct 16;9:2482. doi: 10.3389/fmicb.2018.02482. eCollection 2018.
9
Tremblaya phenacola PPER: an evolutionary beta-gammaproteobacterium collage.
ISME J. 2018 Jan;12(1):124-135. doi: 10.1038/ismej.2017.144. Epub 2017 Sep 15.
10
Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria.
Microb Ecol. 2017 Nov;74(4):947-960. doi: 10.1007/s00248-017-0993-z. Epub 2017 May 22.

本文引用的文献

2
Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii.
PLoS Genet. 2012;8(10):e1003012. doi: 10.1371/journal.pgen.1003012. Epub 2012 Oct 25.
3
Evolution and diversity of Arsenophonus endosymbionts in aphids.
Mol Ecol. 2013 Jan;22(1):260-70. doi: 10.1111/mec.12092. Epub 2012 Oct 29.
5
Endosymbiosis.
Curr Biol. 2012 Jul 24;22(14):R555-61. doi: 10.1016/j.cub.2012.06.010.
7
Exploring the effect of the Cardinium endosymbiont on spiders.
J Evol Biol. 2012 Aug;25(8):1521-30. doi: 10.1111/j.1420-9101.2012.02535.x. Epub 2012 May 16.
9
Do phages efficiently shuttle transposable elements among prokaryotes?
Evolution. 2011 Nov;65(11):3327-31. doi: 10.1111/j.1558-5646.2011.01395.x. Epub 2011 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验