Institut für Anorganische und Analytische Chemie, Lehrstuhl für Anorganische Chemie II, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany.
Dalton Trans. 2013 Sep 7;42(33):11812-23. doi: 10.1039/c3dt50890k.
The sugar-modified Schiff-base ligands derived from benzyl 2-deoxy-2-salicylideneamino-α-D-glucopyranoside (H2L(5-Br) and H2L(3-OMe)) were used to prepare the chiral oxidovanadium(V) complexes [VO(L(5-Br))(OMe)] (1) and [VO(L(3-OMe))(OMe)] (2) which can be isolated from a methanol solution as the six-coordinate complexes with an additional methanol ligand [VO(L(5-Br))(OMe)(MeOH)] (1-MeOH) and [VO(L(3-OMe))(OMe) (MeOH)] (2-MeOH). Both complexes crystallize in the orthorhombic space group P2(1)2(1)2(1) together with two solvent molecules of methanol as 1-MeOH·2MeOH and 1-MeOH·2MeOH. In both crystal structures, only diastereomers with A configuration at the chiral vanadium centre (OC-6-24-A) are observed which corresponds to an cis configuration of the oxido group at the vanadium centre and the benzyl group at the anomeric carbon of the sugar backbone. Upon recrystallization of 2-MeOH from chloroform, the five-coordinate complex 2 was obtained which crystallizes in the monoclinic space group P2(1) with one co-crystallized chloroform molecule (2·CHCl3). For the chiral vanadium centre in 2·CHCl3, a C configuration (SPY-5-43-C) is observed which corresponds to an trans structure as far as the orientations of the oxido and benzyl groups are concerned. (1)H and (51)V NMR spectra of 1 and 2 indicate the presence of two diastereomers in solution. Their absolute configurations can be assigned based on the magnetic anisotropy effect of the oxidovanadium group. This effect leads to significant differences for the (1)H NMR chemical shifts of the H-2 (1.1 ppm) and H-3 protons (0.3 ppm) of the glucose backbone of the two diastereomers, with the downfield shift observed for the H-2 proton of the C-configured and the H-3 proton of the A-configured diastereomer at the vanadium centre. For 1 and 2 the difference between the (51)V NMR chemical shifts of the two diastereomers is 30 and 28 ppm, respectively. Also in the (13)C NMR significant chemical shift differences between the two diastereomers are observed for the carbon atoms C2 (2 ppm) and C3 (4 ppm). DFT calculations of the NMR chemical shift parameters have been performed which are in good agreement with the experimental data. Moreover, the isomerization mechanism between the diastereomers is analysed on the basis of DFT calculations which indicate the required presence of methanol molecules as protic donors.
由苄基 2-去氧-2-水杨亚胺基-α-D-吡喃葡萄糖苷(H2L(5-Br) 和 H2L(3-OMe))衍生的糖修饰的席夫碱配体被用于制备手性氧化钒(V)配合物 [VO(L(5-Br))(OMe)](1)和 [VO(L(3-OMe))(OMe)](2),它们可以从甲醇溶液中分离出来作为六配位配合物,带有一个额外的甲醇配体[VO(L(5-Br))(OMe)(MeOH)](1-MeOH)和[VO(L(3-OMe))(OMe)(MeOH)](2-MeOH)。这两个配合物都结晶在正交晶系空间群 P2(1)2(1)2(1)中,其中包含两个甲醇溶剂分子作为 1-MeOH·2MeOH 和 1-MeOH·2MeOH。在这两个晶体结构中,仅观察到手性钒中心 A 构型的非对映异构体(OC-6-24-A),这对应于钒中心的氧化基团和糖主链的苄基的顺式构型。在从氯仿中重结晶 2-MeOH 时,获得了五配位配合物 2,它结晶在单斜晶系空间群 P2(1)中,带有一个共结晶的氯仿分子(2·CHCl3)。对于 2·CHCl3 中的手性钒中心,观察到 C 构型(SPY-5-43-C),这对应于氧化基团和苄基基团的取向的反式结构。(1)H 和(51)V NMR 光谱的 1 和 2 表明在溶液中存在两种非对映异构体。它们的绝对构型可以根据氧化钒基团的磁各向异性效应来确定。这种效应导致葡萄糖主链的 H-2(1.1 ppm)和 H-3 质子(0.3 ppm)的(1)H NMR 化学位移对于两种非对映异构体有显著差异,C 构型的 H-2 质子和钒中心的 A 构型的 H-3 质子发生向下场位移。对于 1 和 2,两种非对映异构体的(51)V NMR 化学位移之间的差异分别为 30 和 28 ppm。在(13)C NMR 中,也观察到两个非对映异构体的碳原子 C2(2 ppm)和 C3(4 ppm)之间的显著化学位移差异。已经进行了 NMR 化学位移参数的 DFT 计算,它们与实验数据吻合良好。此外,基于 DFT 计算分析了非对映异构体之间的异构化机制,表明需要甲醇分子作为质子供体的存在。