Suppr超能文献

针对重度抑郁症的神经影像学治疗选择生物标志物。

Toward a neuroimaging treatment selection biomarker for major depressive disorder.

机构信息

Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA.

出版信息

JAMA Psychiatry. 2013 Aug;70(8):821-9. doi: 10.1001/jamapsychiatry.2013.143.

Abstract

IMPORTANCE

Currently, fewer than 40% of patients treated for major depressive disorder achieve remission with initial treatment. Identification of a biological marker that might improve these odds could have significant health and economic impact.

OBJECTIVE

To identify a candidate neuroimaging "treatment-specific biomarker" that predicts differential outcome to either medication or psychotherapy.

DESIGN

Brain glucose metabolism was measured with positron emission tomography prior to treatment randomization to either escitalopram oxalate or cognitive behavior therapy for 12 weeks. Patients who did not remit on completion of their phase 1 treatment were offered enrollment in phase 2 comprising an additional 12 weeks of treatment with combination escitalopram and cognitive behavior therapy.

SETTING

Mood and anxiety disorders research program at an academic medical center.

PARTICIPANTS

Men and women aged 18 to 60 years with currently untreated major depressive disorder.

INTERVENTION

Randomized assignment to 12 weeks of treatment with either escitalopram oxalate (10-20 mg/d) or 16 sessions of manual-based cognitive behavior therapy.

MAIN OUTCOME AND MEASURE

Remission, defined as a 17-item Hamilton depression rating scale score of 7 or less at both weeks 10 and 12, as assessed by raters blinded to treatment.

RESULTS

Positive and negative predictors of remission were identified with a 2-way analysis of variance treatment (escitalopram or cognitive behavior therapy) × outcome (remission or nonresponse) interaction. Of 65 protocol completers, 38 patients with clear outcomes and usable positron emission tomography scans were included in the primary analysis: 12 remitters to cognitive behavior therapy, 11 remitters to escitalopram, 9 nonresponders to cognitive behavior therapy, and 6 nonresponders to escitalopram. Six limbic and cortical regions were identified, with the right anterior insula showing the most robust discriminant properties across groups (effect size = 1.43). Insula hypometabolism (relative to whole-brain mean) was associated with remission to cognitive behavior therapy and poor response to escitalopram, while insula hypermetabolism was associated with remission to escitalopram and poor response to cognitive behavior therapy.

CONCLUSIONS AND RELEVANCE

If verified with prospective testing, the insula metabolism-based treatment-specific biomarker defined in this study provides the first objective marker, to our knowledge, to guide initial treatment selection for depression.

TRIAL REGISTRATION

Registered at clinicaltrials.gov (NCT00367341).

摘要

重要性

目前,接受初始治疗的重度抑郁症患者中,仅有不到 40%达到缓解。如果能够识别出一种生物学标志物,或许可以提高这种可能性,这将对健康和经济产生重大影响。

目的

确定一种候选神经影像学“治疗特异性生物标志物”,以预测药物治疗或认知行为疗法的不同结果。

设计

在开始随机分配草酸艾司西酞普兰或认知行为治疗 12 周之前,使用正电子发射断层扫描测量脑葡萄糖代谢。在完成第 1 阶段治疗后未缓解的患者,可选择参加第 2 阶段治疗,包括草酸艾司西酞普兰联合认知行为治疗再进行 12 周的治疗。

地点

学术医疗中心的情绪和焦虑障碍研究计划。

参与者

年龄在 18 至 60 岁之间、目前未经治疗的重度抑郁症男性和女性。

干预

随机分配接受草酸艾司西酞普兰(10-20mg/d)或 16 节基于手册的认知行为治疗 12 周的治疗。

主要结果和测量

缓解定义为治疗第 10 周和第 12 周时,17 项汉密尔顿抑郁量表评分均为 7 或更低,由对治疗不知情的评估者进行评估。

结果

通过方差分析治疗(艾司西酞普兰或认知行为疗法)×结果(缓解或无反应)的双向分析识别出了缓解的阳性和阴性预测因素。在 65 名完成方案的患者中,有 38 名具有明确结果和可用正电子发射断层扫描的患者被纳入主要分析:12 名认知行为治疗缓解者,11 名艾司西酞普兰缓解者,9 名认知行为治疗无反应者,6 名艾司西酞普兰无反应者。确定了 6 个边缘和皮质区域,其中右前岛叶在组间具有最强大的判别特征(效应量=1.43)。与全脑平均值相比,岛叶代谢低下(相对值)与认知行为治疗缓解和艾司西酞普兰反应不良有关,而岛叶代谢亢进与艾司西酞普兰缓解和认知行为治疗反应不良有关。

结论和相关性

如果通过前瞻性测试得到验证,本研究中定义的基于岛叶代谢的治疗特异性生物标志物将首次提供客观标志物,以指导我们对抑郁症的初始治疗选择。

试验注册

在 clinicaltrials.gov 注册(NCT00367341)。

相似文献

1
Toward a neuroimaging treatment selection biomarker for major depressive disorder.
JAMA Psychiatry. 2013 Aug;70(8):821-9. doi: 10.1001/jamapsychiatry.2013.143.
2
[PET reveals the best antidepressant therapy].
MMW Fortschr Med. 2013 Sep 26;155(16):31. doi: 10.1007/s15006-013-2162-8.
3
Significance of right anterior insula activity for mental health intervention.
JAMA Psychiatry. 2014 Mar;71(3):336. doi: 10.1001/jamapsychiatry.2013.3507.
4
Pretreatment brain states identify likely nonresponse to standard treatments for depression.
Biol Psychiatry. 2014 Oct 1;76(7):527-35. doi: 10.1016/j.biopsych.2013.12.005. Epub 2013 Dec 19.
5
Certainly not the first neuroimaging treatment selection biomarker.
JAMA Psychiatry. 2014 Feb;71(2):210-1. doi: 10.1001/jamapsychiatry.2013.3303.
8
Brain serotonin 1A receptor binding as a predictor of treatment outcome in major depressive disorder.
Biol Psychiatry. 2013 Nov 15;74(10):760-7. doi: 10.1016/j.biopsych.2013.03.021. Epub 2013 May 9.
9
Effects of Patient Preferences on Outcomes in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) Study.
Am J Psychiatry. 2017 Jun 1;174(6):546-556. doi: 10.1176/appi.ajp.2016.16050517. Epub 2017 Mar 24.
10
Benefits of Sequentially Adding Cognitive-Behavioral Therapy or Antidepressant Medication for Adults With Nonremitting Depression.
Am J Psychiatry. 2019 Apr 1;176(4):275-286. doi: 10.1176/appi.ajp.2018.18091075. Epub 2019 Feb 15.

引用本文的文献

1
Brain transcriptomic signatures for mood disorders and suicide phenotypes: an anterior insula and subgenual ACC network postmortem study.
Brain Behav Immun Health. 2025 Jul 5;48:101051. doi: 10.1016/j.bbih.2025.101051. eCollection 2025 Oct.
2
Unveiling the invisible: How cutting-edge neuroimaging transforms adolescent depression diagnosis.
World J Psychiatry. 2025 May 19;15(5):102953. doi: 10.5498/wjp.v15.i5.102953.
4
Prediction of individual patient outcomes to psychotherapy vs medication for major depression.
Npj Ment Health Res. 2025 Feb 5;4(1):4. doi: 10.1038/s44184-025-00119-9.
5
6
Biomarker-Guided Tailored Therapy in Major Depression.
Adv Exp Med Biol. 2024;1456:379-400. doi: 10.1007/978-981-97-4402-2_19.
10
Neural activity during inhibitory control predicts suicidal ideation with machine learning.
NPP Digit Psychiatry Neurosci. 2024;2(1):10. doi: 10.1038/s44277-024-00012-x. Epub 2024 Jul 8.

本文引用的文献

2
Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
Mol Psychiatry. 2012 Dec;17(12):1174-9. doi: 10.1038/mp.2012.105. Epub 2012 Aug 7.
4
The Canadian Biomarker Integration Network in Depression (CAN-BIND): advances in response prediction.
Curr Pharm Des. 2012;18(36):5976-89. doi: 10.2174/138161212803523635.
5
Modern management of acute myocardial infarction.
Curr Probl Cardiol. 2012 Jul;37(7):237-310. doi: 10.1016/j.cpcardiol.2012.03.002.
8
Attentional modulation of primary interoceptive and exteroceptive cortices.
Cereb Cortex. 2013 Jan;23(1):114-26. doi: 10.1093/cercor/bhr385. Epub 2012 Jan 19.
9
Treating depression after initial treatment failure: directly comparing switch and augmenting strategies in STAR*D.
J Clin Psychopharmacol. 2012 Feb;32(1):114-9. doi: 10.1097/JCP.0b013e31823f705d.
10
Depression beliefs, treatment preference, and outcomes in a randomized trial for major depressive disorder.
J Psychiatr Res. 2012 Mar;46(3):375-81. doi: 10.1016/j.jpsychires.2011.11.003. Epub 2011 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验