Suppr超能文献

基于非参数线性回归法的傅里叶变换卷积发射数据同时测定孟鲁司特和非索非那定。

Simultaneous determination of montelukast and fexofenadine using Fourier transform convolution emission data under non- parametric linear regression method.

机构信息

Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, 21521, Egypt,

出版信息

J Fluoresc. 2013 Nov;23(6):1329-40. doi: 10.1007/s10895-013-1235-5. Epub 2013 Jun 13.

Abstract

New hybrid chemometric method has been applied to the emission response data. It deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. This new application was used for the simultaneous determination of Fexofenadine and Montelukast in bulk and pharmaceutical preparation. It was found beneficial in the resolution of partially overlapping emission spectra of this mixture. The application of this chemometric method was found beneficial in eliminating different types of interferences common in spectrofluorimetry such as overlapping emission spectra and self- quenching. Not only this chemometric approache was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil's method). The presented work compares the application of Theil's method in handling the response data, with the least-squares parametric regression method, which is considered the de facto standard method used for regression. So this work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. Theil's method was found to be superior to the method of least squares as it could effectively circumvent any outlier data points.

摘要

新的混合化学计量学方法已应用于发射响应数据。它涉及使用 8 点 sin xi 多项式(离散傅里叶函数)对这些发射数据进行导数处理后对发射数据进行卷积。这种新的应用方法用于同时测定非索非那定和孟鲁司特在原料药和制剂中的含量。发现它有利于解决该混合物部分重叠发射光谱的分辨率问题。这种化学计量学方法的应用有利于消除荧光分光光度法中常见的各种干扰,如重叠发射光谱和自猝灭。不仅对发射数据应用了这种化学计量学方法,而且还对获得的数据进行了非参数线性回归分析(泰尔方法)。本工作比较了泰尔方法在处理响应数据方面的应用,与最小二乘参数回归方法(被认为是用于回归的事实上的标准方法)。因此,这项工作结合了导数和卷积的优点,使用离散傅里叶函数,以及数据的非参数分析的可靠性和有效性。泰尔方法优于最小二乘法,因为它可以有效地避免任何异常值数据点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验