Benitez Federico, Wschebor Nicolás
LPTMC, CNRS-UMR 7600, Université Pierre et Marie Curie, 75252 Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052132. doi: 10.1103/PhysRevE.87.052132. Epub 2013 May 28.
We present some exact results on the behavior of branching and annihilating random walks, both in the directed percolation and parity conserving universality classes. Contrary to usual perturbation theory, we perform an expansion in the branching rate around the nontrivial pure annihilation (PA) model, whose correlation and response function we compute exactly. With this, the nonuniversal threshold value for having a phase transition in the simplest system belonging to the directed percolation universality class is found to coincide with previous nonperturbative renormalization group (RG) approximate results. We also show that the parity conserving universality class has an unexpected RG fixed point structure, with a PA fixed point which is unstable in all dimensions of physical interest.
我们给出了关于分支湮灭随机游走行为的一些精确结果,这些结果涵盖了有向渗流和奇偶守恒普适类。与通常的微扰理论不同,我们围绕非平凡的纯湮灭(PA)模型在分支率上进行展开,精确计算了该模型的关联函数和响应函数。由此发现,属于有向渗流普适类的最简单系统中发生相变的非普适阈值与先前的非微扰重整化群(RG)近似结果一致。我们还表明,奇偶守恒普适类具有意想不到的RG不动点结构,其中一个PA不动点在所有具有物理意义的维度上都是不稳定的。