Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Phys Rev Lett. 2013 May 31;110(22):223603. doi: 10.1103/PhysRevLett.110.223603.
We demonstrate optomechanically mediated electromagnetically induced transparency and wavelength conversion in silicon nitride (Si3N4) microdisk resonators. Fabricated devices support whispering gallery optical modes with a quality factor (Q) of 10(6), and radial breathing mechanical modes with a Q=10(4) and a resonance frequency of 625 MHz, so that the system is in the resolved sideband regime. Placing a strong optical control field on the red (blue) detuned sideband of the optical mode produces coherent interference with a resonant probe beam, inducing a transparency (absorption) window for the probe. This is observed for multiple optical modes of the device, all of which couple to the same mechanical mode, and which can be widely separated in wavelength due to the large band gap of Si3N4. These properties are exploited to demonstrate frequency up-conversion and down-conversion of optical signals between the 1300 and 980 nm bands with a frequency span of 69.4 THz.
我们在氮化硅 (Si3N4) 微盘谐振器中演示了基于光机械耦合的电磁感应透明和波长转换。所制作的器件支持 whispering gallery 光学模式,其品质因数 (Q) 为 10(6),径向呼吸机械模式的 Q 值为 10(4),共振频率为 625 MHz,因此系统处于边带分解状态。在光学模式的红(蓝)边带处施加强的光控制场,与共振探测光束产生相干干涉,为探测光束产生透明(吸收)窗口。这在器件的多个光学模式中都得到了观察,所有模式都与同一机械模式耦合,并且由于 Si3N4 的大带隙,它们在波长上可以被广泛分离。这些特性被利用来演示在 1300nm 和 980nm 波段之间的光学信号的上转换和下转换,其频率跨度为 69.4THz。