Suppr超能文献

人类腹侧视觉通路上与上下文相关的多个对象的表示。

Representation of contextually related multiple objects in the human ventral visual pathway.

机构信息

Beijing Normal University, China.

出版信息

J Cogn Neurosci. 2013 Aug;25(8):1261-9. doi: 10.1162/jocn_a_00406. Epub 2013 Apr 22.

Abstract

Real-world scenes usually contain a set of cluttered and yet contextually related objects. Here we used fMRI to investigate where and how contextually related multiple objects were represented in the human ventral visual pathway. Specifically, we measured the responses in face-selective and body-selective regions along the ventral pathway when faces and bodies were presented either simultaneously or in isolation. We found that, in the posterior regions, the response for the face and body pair was the weighted average response for faces and bodies presented in isolation. In contrast, the anterior regions encoded the face and body pair in a mutually facilitative fashion, with the response for the pair significantly higher than that for its constituent objects. Furthermore, in the right fusiform face area, the face and body pair was represented as one inseparable object, possibly to reduce perceptual load and increase representation efficiency. Therefore, our study suggests that the visual system uses a hierarchical representation scheme to process multiple objects in natural scenes: the average mechanism in posterior regions helps retaining information of individual objects in clutter, whereas the nonaverage mechanism in the anterior regions uses the contextual information to optimize the representation for multiple objects.

摘要

真实场景通常包含一组杂乱但上下文相关的对象。在这里,我们使用 fMRI 来研究人类腹侧视觉通路中上下文相关的多个对象是如何以及在何处被表示的。具体来说,我们在面孔和身体分别呈现或同时呈现时,测量了腹侧通路中选择性面孔区域和选择性身体区域的反应。我们发现,在后区,面孔和身体对的反应是单独呈现的面孔和身体的加权平均反应。相比之下,前区以相互促进的方式对面孔和身体对进行编码,对该对的反应明显高于其组成对象的反应。此外,在右侧梭状回面孔区,面孔和身体对被表示为一个不可分割的对象,这可能是为了减少感知负荷并提高表示效率。因此,我们的研究表明,视觉系统使用分层表示方案来处理自然场景中的多个对象:后区的平均机制有助于在杂乱中保留单个对象的信息,而前区的非平均机制则利用上下文信息来优化多个对象的表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验