Suppr超能文献

基于最大公共子图的化合物相似性高效计算及其在基因转录水平预测中的应用。

Efficient calculation of compound similarity based on maximum common subgraphs and its application to prediction of gene transcript levels.

作者信息

Berlo Rogier J P Van, Winterbach Wynand, Groot Marco J L De, Bender Andreas, Verheijen Peter J T, Reinders Marcel J T, Ridder Dick De

机构信息

The Delft Bioinformatics Lab/Kluyver Centre for Genomics of Industrial Fermentation, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.

出版信息

Int J Bioinform Res Appl. 2013;9(4):407-32. doi: 10.1504/IJBRA.2013.054688.

Abstract

Properties of a chemical entity, both physical and biological, are related to its structure. Since compound similarity can be used to infer properties of novel compounds, in chemoinformatics much attention has been paid to ways of calculating structural similarity. A useful metric to capture the structural similarity between compounds is the relative size of the Maximum Common Subgraph (MCS). The MCS is the largest substructure present in a pair of compounds, when represented as graphs. However, in practice it is difficult to employ such a metric, since calculation of the MCS becomes computationally intractable when it is large. We propose a novel algorithm that significantly reduces computation time for finding large MCSs, compared to a number of state-of-the-art approaches. The use of this algorithm is demonstrated in an application predicting the transcriptional response of breast cancer cell lines to different drug-like compounds, at a scale which is challenging for the most efficient MCS-algorithms to date. In this application 714 compounds were compared.

摘要

化学实体的物理和生物学特性均与其结构相关。由于化合物相似性可用于推断新化合物的特性,因此在化学信息学中,人们非常关注计算结构相似性的方法。一种用于衡量化合物之间结构相似性的有用指标是最大公共子图(MCS)的相对大小。当化合物表示为图时,MCS是一对化合物中存在的最大子结构。然而,在实际应用中,很难采用这样的指标,因为当MCS较大时,其计算在计算上变得难以处理。与许多现有方法相比,我们提出了一种新颖的算法,该算法可显著减少寻找大型MCS的计算时间。在预测乳腺癌细胞系对不同类药物化合物的转录反应的应用中,展示了该算法的使用,该规模对迄今为止最有效的MCS算法来说具有挑战性。在该应用中,比较了714种化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验