Suppr超能文献

通过特定因子直接重编程为所需细胞类型。

Direct reprogramming into desired cell types by defined factors.

作者信息

Ieda Masaki

机构信息

Department of Clinical and Molecular Cardiovascular Research, School of Medicine, Keio University, Tokyo, Japan.

出版信息

Keio J Med. 2013;62(3):74-82. doi: 10.2302/kjm.2012-0017-re. Epub 2013 Jun 21.

Abstract

In the field of developmental biology, the concept that cells, once terminally differentiated, are fixed in their cell fate was long believed to be true. However, Dr. Gurdon and colleagues challenged this fundamental doctrine and demonstrated that cellular reprogramming and cell fate conversion are possible by somatic nuclear transfer and cell fusion. The Weintraub laboratory discovered in the 1980s that a single transcription factor, MyoD, can convert fibroblasts into skeletal muscle cells, and subsequent studies also demonstrated that several transcription factors are lineage converting factors within the blood cell lineage. In 2006, Takahashi and Yamanaka discovered that transduction of the four stem cell-specific transcription factors Oct4, Sox2, Klf4, and c-Myc can reprogram mouse fibroblast cells into a pluripotent state. In 2007, they demonstrated that the same four factors similarly reprogram human somatic cells into pluripotent stem cells. These discoveries by Dr. Yamanaka and colleagues fundamentally changed research in the fields of disease modeling and regenerative medicine and also inspired the next stage of cellular reprogramming, i.e., the generation of desired cell types without reverting to stem cells by overexpression of lineage-specific transcription factors. Recent studies demonstrated that a diverse range of cell types, such as pancreatic β cells, neurons, neural progenitors, cardiomyocytes, and hepatocytes, can be directly induced from somatic cells by combinations of specific factors. In this article, I review the pioneering works of cellular reprogramming and discuss the recent progress and future perspectives of direct reprogramming technology.

摘要

在发育生物学领域,细胞一旦终末分化,其细胞命运便固定不变这一概念长期以来被认为是正确的。然而,格登博士及其同事对这一基本学说提出了挑战,并证明通过体细胞核移植和细胞融合,细胞重编程和细胞命运转换是可能的。温特劳布实验室在20世纪80年代发现,单一转录因子MyoD可将成纤维细胞转化为骨骼肌细胞,随后的研究还表明,几种转录因子是血细胞谱系内的谱系转换因子。2006年,高桥和山中发现,转导四种干细胞特异性转录因子Oct4、Sox2、Klf4和c-Myc可将小鼠成纤维细胞重编程为多能状态。2007年,他们证明同样的四种因子能以类似方式将人类体细胞重编程为多能干细胞。山中博士及其同事的这些发现从根本上改变了疾病建模和再生医学领域的研究,也激发了细胞重编程的下一阶段,即通过谱系特异性转录因子的过表达产生所需细胞类型而无需回复到干细胞状态。最近的研究表明,通过特定因子的组合,多种细胞类型,如胰腺β细胞、神经元、神经祖细胞、心肌细胞和肝细胞,可直接从体细胞诱导产生。在本文中,我回顾了细胞重编程的开创性工作,并讨论了直接重编程技术的最新进展和未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验