National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA.
BMC Bioinformatics. 2013 Jun 26;14:208. doi: 10.1186/1471-2105-14-208.
MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results.
We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision.
Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
美国国家医学图书馆(NLM)的 MEDLINE 引文是使用受控词汇 Medical Subject Headings(MeSH)进行人工索引的。为此,索引员需要阅读文章的全文。由于 MEDLINE 的增长,NLM 索引倡议正在探索可以支持索引员任务的索引方法。Medical Text Indexer(MTI)是 NLM 索引倡议开发的一种工具,用于向索引员提供 MeSH 索引建议。目前,MTI 的输入仅为 MEDLINE 引文、标题和摘要。以前的工作表明,使用全文作为 MTI 的输入可以提高召回率,但会大大降低精度。我们建议使用从全文自动生成的摘要作为 MTI 的输入,以用于向索引员建议 MeSH 标题的任务。摘要从全文中提取最显著的信息,这可能会增加基于 MEDLINE 的自动索引方法的覆盖范围。我们假设如果结果足够好,手动索引员可能可以使用自动摘要代替全文,并结合 MTI 的建议,以在保持高质量索引结果的同时加快速度。
我们使用两种不同的摘要生成器生成了不同长度的摘要,并使用不同的算法(MTI、单个 MTI 组件和机器学习)对摘要进行了 MTI 索引评估。将结果与全文文章和 MEDLINE 引文进行了比较。我们的结果表明,自动生成的摘要在召回率上与全文文章相似,但在精度上更高。与 MEDLINE 引文相比,摘要的召回率更高,但精度更低。
我们的结果表明,自动摘要的索引效果优于全文文章。摘要的召回率与全文文章相似,但精度更高,这似乎表明自动摘要可以有效地捕捉原始文章中的最重要内容。将 MEDLINE 引文和自动生成的摘要相结合,可以改进 MTI 提出的建议。另一方面,索引性能可能取决于要索引的 MeSH 标题。因此,可以将摘要技术视为一种特征选择算法,可能需要针对每个 MeSH 标题单独进行调整。