InnerEarLab, Auditory Systems Physiology Group, Department of Otolaryngology, and Collaborative Research Center 889, University Medical Center Göttingen, D-37099 Göttingen, Germany.
J Neurosci. 2013 Jun 26;33(26):10661-6. doi: 10.1523/JNEUROSCI.1215-13.2013.
Hearing over a wide range of sound intensities is thought to require complementary coding by functionally diverse spiral ganglion neurons (SGNs), each changing activity only over a subrange. The foundations of SGN diversity are not well understood but likely include differences among their inputs: the presynaptic active zones (AZs) of inner hair cells (IHCs). Here we studied one candidate mechanism for causing SGN diversity-heterogeneity of Ca(2+) influx among the AZs of IHCs-during postnatal development of the mouse cochlea. Ca(2+) imaging revealed a change from regenerative to graded synaptic Ca(2+) signaling after the onset of hearing, when in vivo SGN spike timing changed from patterned to Poissonian. Furthermore, we detected the concurrent emergence of stronger synaptic Ca(2+) signals in IHCs and higher spontaneous spike rates in SGNs. The strengthening of Ca(2+) signaling at a subset of AZs primarily reflected a gain of Ca(2+) channels. We hypothesize that the number of Ca(2+) channels at each IHC AZ critically determines the firing properties of its corresponding SGN and propose that AZ heterogeneity enables IHCs to decompose auditory information into functionally diverse SGNs.
在广泛的声音强度范围内进行听力被认为需要功能多样化的螺旋神经节神经元 (SGN) 进行互补编码,每个神经元仅在亚范围内改变活动。SGN 多样性的基础尚未得到很好的理解,但可能包括其输入之间的差异:内毛细胞 (IHC) 的突触前活性区 (AZ)。在这里,我们研究了导致 SGN 多样性的一种候选机制——在小鼠耳蜗的出生后发育过程中,IHC 的 AZ 之间 Ca(2+) 流入的异质性。Ca(2+) 成像显示,在听觉开始后,从再生到分级突触 Ca(2+) 信号的转变,此时体内 SGN 尖峰定时从模式化转变为泊松式。此外,我们还检测到 IHC 中更强的突触 Ca(2+) 信号和 SGN 中更高的自发尖峰率的同时出现。一部分 AZ 中 Ca(2+) 信号的增强主要反映了 Ca(2+) 通道的增益。我们假设每个 IHC AZ 的 Ca(2+) 通道数量对其相应 SGN 的发射特性具有决定性影响,并提出 AZ 异质性使 IHC 能够将听觉信息分解为功能多样化的 SGN。