Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
Chemphyschem. 2013 Aug 26;14(12):2641-53. doi: 10.1002/cphc.201201059. Epub 2013 Jun 26.
This article highlights some physical studies on the relaxation dynamics and Förster resonance energy transfer (FRET) of semiconductor quantum dots (QDs) and the way these phenomena change with size, shape, and composition of the QDs. The understanding of the excited-state dynamics of photoexcited QDs is essential for technological applications such as efficient solar energy conversion, light-emitting diodes, and photovoltaic cells. Here, our emphasis is directed at describing the influence of size, shape, and composition of the QDs on their different relaxation processes, that is, radiative relaxation rate, nonradiative relaxation rate, and number of trap states. A stochastic model of carrier relaxation dynamics in semiconductor QDs was proposed to correlate with the experimental results. Many recent studies reveal that the energy transfer between the QDs and a dye is a FRET process, as established from 1/d(6) distance dependence. QD-based energy-transfer processes have been used in applications such as luminescence tagging, imaging, sensors, and light harvesting. Thus, the understanding of the interaction between the excited state of the QD and the dye molecule and quantitative estimation of the number of dye molecules attached to the surface of the QD by using a kinetic model is important. Here, we highlight the influence of size, shape, and composition of QDs on the kinetics of energy transfer. Interesting findings reveal that QD-based energy-transfer processes offer exciting opportunities for future applications. Finally, a tentative outlook on future developments in this research field is given.
本文重点介绍了一些关于半导体量子点(QD)的弛豫动力学和Förster 共振能量转移(FRET)的物理研究,以及这些现象随 QD 的尺寸、形状和组成而变化的方式。了解光激发 QD 的激发态动力学对于高效太阳能转换、发光二极管和光伏电池等技术应用至关重要。在这里,我们重点描述了 QD 的尺寸、形状和组成对其不同弛豫过程的影响,即辐射弛豫率、非辐射弛豫率和陷阱态数量。提出了一种半导体 QD 载流子弛豫动力学的随机模型来与实验结果相关联。许多最近的研究表明,QD 与染料之间的能量转移是一个 FRET 过程,这是从 1/d(6)距离依赖性中建立起来的。基于 QD 的能量转移过程已应用于发光标记、成像、传感器和光捕获等领域。因此,理解 QD 的激发态与染料分子之间的相互作用以及通过动力学模型定量估计附着在 QD 表面的染料分子的数量非常重要。在这里,我们强调了 QD 的尺寸、形状和组成对能量转移动力学的影响。有趣的发现表明,基于 QD 的能量转移过程为未来的应用提供了令人兴奋的机会。最后,对该研究领域未来发展给出了一个初步的展望。