Suppr超能文献

鳍鲸的心血管设计:高硬度的动脉可防止在深处承受不利的压力梯度。

Cardiovascular design in fin whales: high-stiffness arteries protect against adverse pressure gradients at depth.

机构信息

Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.

出版信息

J Exp Biol. 2013 Jul 15;216(Pt 14):2548-63. doi: 10.1242/jeb.081802.

Abstract

Fin whales have an incompliant aorta, which, we hypothesize, represents an adaptation to large, depth-induced variations in arterial transmural pressures. We hypothesize these variations arise from a limited ability of tissues to respond to rapid changes in ambient ocean pressures during a dive. We tested this hypothesis by measuring arterial mechanics experimentally and modelling arterial transmural pressures mathematically. The mechanical properties of mammalian arteries reflect the physiological loads they experience, so we examined a wide range of fin whale arteries. All arteries had abundant adventitial collagen that was usually recruited at very low stretches and inflation pressures (2-3 kPa), making arterial diameter largely independent of transmural pressure. Arteries withstood significant negative transmural pressures (-7 to -50 kPa) before collapsing. Collapse was resisted by recruitment of adventitial collagen at very low stretches. These findings are compatible with the hypothesis of depth-induced variation of arterial transmural pressure. Because transmural pressures depend on thoracic pressures, we modelled the thorax of a diving fin whale to assess the likelihood of significant variation in transmural pressures. The model predicted that deformation of the thorax body wall and diaphragm could not always equalize thoracic and ambient pressures because of asymmetrical conditions on dive descent and ascent. Redistribution of blood could partially compensate for asymmetrical conditions, but inertial and viscoelastic lag necessarily limits tissue response rates. Without pressure equilibrium, particularly when ambient pressures change rapidly, internal pressure gradients will develop and expose arteries to transient pressure fluctuations, but with minimal hemodynamic consequence due to their low compliance.

摘要

长须鲸的主动脉顺应性差,我们假设这是对动脉壁内压的大而深度诱导的变化的一种适应。我们假设这些变化源于组织在潜水过程中对环境海洋压力的快速变化的有限响应能力。我们通过实验测量动脉力学和数学模型化动脉壁内压来检验这一假设。哺乳动物动脉的力学特性反映了它们所经历的生理负荷,因此我们检查了广泛的长须鲸动脉。所有的动脉都有丰富的外膜胶原,通常在很低的拉伸和充气压力(2-3kPa)下被募集,使动脉直径在很大程度上独立于壁内压。动脉在崩溃前能承受很大的负壁内压(-7 至-50kPa)。在非常低的拉伸下募集外膜胶原来抵抗崩溃。这些发现与动脉壁内压随深度变化的假设是一致的。由于壁内压取决于胸压,我们模拟了潜水长须鲸的胸部,以评估壁内压是否会有显著变化的可能性。该模型预测,由于潜水下降和上升时的不对称条件,胸壁和横膈膜的变形不能总是使胸内和环境压力相等。血液的再分配可以部分补偿不对称条件,但惯性和粘弹性滞后必然限制组织的响应速度。在没有压力平衡的情况下,特别是当环境压力迅速变化时,内部压力梯度将发展,并使动脉暴露于瞬态压力波动,但由于其低顺应性,对血液动力学的影响最小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验