Institute of Pharmacology and Toxicology, RWTH Aachen University, Germany.
FEBS J. 2013 Sep;280(18):4495-511. doi: 10.1111/febs.12411. Epub 2013 Jul 22.
The function of many protein kinases is controlled by the phosphorylation of a critical tyrosine residue in the activation loop. Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) autophosphorylate on this tyrosine residue but phosphorylate substrates on aliphatic amino acids. This study addresses the mechanism of dual specificity kinase activity in DYRK1A and related kinases. Tyrosine autophosphorylation of DYRK1A occurred rapidly during in vitro translation and did not depend on the non-catalytic domains or other proteins. Expression in bacteria as well as in mammalian cells revealed that tyrosine kinase activity of DYRK1A is not restricted to the co-translational autophosphorylation in the activation loop. Moreover, mature DYRK1A was still capable of tyrosine autophosphorylation. Point mutants of DYRK1A and DYRK2 lacking the activation loop tyrosine showed enhanced tyrosine kinase activity. A series of structurally diverse DYRK1A inhibitors was used to pharmacologically distinguish different conformational states of the catalytic domain that are hypothesized to account for the dual specificity kinase activity. All tested compounds inhibited substrate phosphorylation with higher potency than autophosphorylation but none of the tested inhibitors differentially inhibited threonine and tyrosine kinase activity. Finally, the related cyclin-dependent kinase-like kinases (CLKs), which lack the activation loop tyrosine, autophosphorylated on tyrosine both in vitro and in living cells. We propose a model of DYRK autoactivation in which tyrosine autophosphorylation in the activation loop stabilizes a conformation of the catalytic domain with enhanced serine/threonine kinase activity without disabling tyrosine phosphorylation. The mechanism of dual specificity kinase activity probably applies to related serine/threonine kinases that depend on tyrosine autophosphorylation for maturation.
许多蛋白激酶的功能受激活环中关键酪氨酸残基磷酸化的控制。双重特异性酪氨酸磷酸化调节激酶 (DYRKs) 在该酪氨酸残基上自身磷酸化,但在脂肪族氨基酸上磷酸化底物。本研究探讨了 DYRK1A 和相关激酶的双重特异性激酶活性的机制。在体外翻译过程中,DYRK1A 的酪氨酸迅速自身磷酸化,不依赖于非催化结构域或其他蛋白质。在细菌和哺乳动物细胞中的表达表明,DYRK1A 的酪氨酸激酶活性不仅限于激活环中的共翻译自身磷酸化。此外,成熟的 DYRK1A 仍然能够进行酪氨酸自身磷酸化。缺乏激活环酪氨酸的 DYRK1A 和 DYRK2 点突变体显示出增强的酪氨酸激酶活性。一系列结构多样的 DYRK1A 抑制剂被用于药理学上区分假设解释双重特异性激酶活性的催化结构域的不同构象状态。所有测试的化合物对底物磷酸化的抑制作用比自身磷酸化的抑制作用更强,但没有一种测试的抑制剂能区分丝氨酸/苏氨酸激酶和酪氨酸激酶活性。最后,缺乏激活环酪氨酸的相关周期蛋白依赖性激酶样激酶 (CLKs) 在体外和活细胞中均在酪氨酸上自身磷酸化。我们提出了一种 DYRK 自动激活模型,其中激活环中的酪氨酸自身磷酸化稳定了具有增强丝氨酸/苏氨酸激酶活性的催化结构域构象,而不会使酪氨酸磷酸化失活。双重特异性激酶活性的机制可能适用于依赖酪氨酸自身磷酸化成熟的相关丝氨酸/苏氨酸激酶。