Suppr超能文献

一种无复合体内关联的回顾性重评估基本模型。

An elemental model of retrospective revaluation without within-compound associations.

作者信息

Connor Patrick C, Lolordo Vincent M, Trappenberg Thomas P

机构信息

Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada,

出版信息

Learn Behav. 2014 Mar;42(1):22-38. doi: 10.3758/s13420-013-0112-z.

Abstract

When retrospective revaluation phenomena (e.g., unovershadowing: AB+, then A-, then test B) were discovered, simple elemental models were at a disadvantage because they could not explain such phenomena. Extensions of these models and novel models appealed to within-compound associations to accommodate these new data. Here, we present an elemental, neural network model of conditioning that explains retrospective revaluation apart from within-compound associations. In the model, previously paired stimuli (say, A and B, after AB+) come to activate similar ensembles of neurons, so that revaluation of one stimulus (A-) has the opposite effect on the other stimulus (B) through changes (decreases) in the strength of the inhibitory connections between neurons activated by B. The ventral striatum is discussed as a possible home for the structure and function of the present model.

摘要

当回顾性重评估现象(例如,去遮蔽:先呈现AB+,然后A-,再测试B)被发现时,简单的元素模型就处于劣势,因为它们无法解释此类现象。这些模型的扩展模型和新模型诉诸于复合刺激内部的关联来适应这些新数据。在此,我们提出一种元素性的神经网络条件作用模型,该模型无需借助复合刺激内部的关联就能解释回顾性重评估现象。在该模型中,先前配对的刺激(比如,在AB+之后的A和B)开始激活相似的神经元集合,这样对一个刺激(A-)的重评估会通过被B激活的神经元之间抑制性连接强度的变化(减弱)对另一个刺激(B)产生相反的影响。腹侧纹状体被认为可能是该模型结构和功能的所在之处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验